Estuaries and Coasts

, Volume 37, Issue 6, pp 1353–1375 | Cite as

In Situ Response of Phytoplankton to Nutrient Additions in a Tropical Coastal Lagoon, (La Mancha, Veracruz, Mexico)

  • Francisco Varona-Cordero
  • Francisco J. Gutiérrez-Mendieta
  • Victor H. Rivera-Monroy


An experimental in situ microcosm study was conducted in the tropical lagoon La Mancha (Gulf of Mexico) to determine whether or not nutrient limitation occurs and to examine the direct effect of an inorganic nutrient pulse on the phytoplankton community structure. The phytoplankton community response to the addition of four treatments with different combinations of nitrogen (N), phosphorus (P), and silica (Si) (+N-NH4 +, +P-PO4 , +Si-SO3, and N:P16) showed that phytoplankton was N-limited as indicated by an increase in phytoplankton biomass (i.e., chlorophyll a) (range, 8–34 mg m−3) during the dry season in two consecutive years (2006 and 2007). Picophytoplankton abundance significantly increased in the +N treatment (145.46 103 cells L−1), while microphytoplankton reached a maximum abundance (68.38 103 cells L−1) in the N:P16 treatment. Phytoplankton composition changed from a community initially dominated by dinoflagellates (e.g., Prorocentrum spp.) to another dominated by diatoms (Thalassiosira and Nitzschia longissima) in the N:P16 treatment. The +N treatment significantly increased Synechococcus sp. growth rates (1.3 divisions per day) (picocyanobacteria). Biomarker pigments measured in the experimental microcosms confirmed observed changes in phytoplankton groups. Our results reveal that La Mancha lagoon is a N-limited coastal system during the dry season and provides evidence of the temporal species successional patterns and mechanisms regulating the phytoplankton community response to nutrient enrichment pulses in this already eutrophic coastal lagoon.


Phytoplankton Microcosms Coastal lagoon La Mancha Veracruz Mexico 



This paper is based on a PhD dissertation submitted to the Doctorado en Ciencias Biológicas, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) by FVC. VHRM participation was partially funded by the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program funded by the USA-National Science Foundation (grant nos. DBI-0620409 and DEB-9910514) as part of an FCE-LTER international collaboration initiative. Special thanks to Drs. Edith Cortés Barberena and Rocío Ortíz from the Department of Health Sciences, UAM-I for allowing the use of their flow cytometer and their excellent technical assistance. We acknowledge CICOLMA field station (INECOL) and its personnel for their logistic support during the study. This paper was greatly enhanced by the critical reviews of Victor Camacho-Ibar and three anonymous reviewers.


  1. Agawin, N.S.R., C.M. Duarte, and S. Agustí. 2000a. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass production. Limnology and Oceanography 45: 591–600.CrossRefGoogle Scholar
  2. Agawin, N.S.R., C.M. Duarte, and S. Agustí. 2000b. Response of Mediterranean Synechococcus growth and loss rates to experimental nutrient inputs. Marine Ecology Progress Series 206: 97–106.CrossRefGoogle Scholar
  3. Barlow, R.G., R.F.C. Mantoura, D.G. Cummings, D.W. Pound, and R.P. Harris. 1998. Evolution of phytoplankton pigments in mesocosms experiments. Estuarine coastal and Shelf Science 46: 15–22.CrossRefGoogle Scholar
  4. Beardall, J., and M. Giordano. 2002. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Functional Plant Biology 29: 335–347.CrossRefGoogle Scholar
  5. Beardall, J., E. Young, and S. Roberts. 2001. Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences 63: 44–69.CrossRefGoogle Scholar
  6. Bec, B., J. Husseini-Ratrema, Y. Collos, P. Souchu, and A. Vaquer. 2005. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon—emphasis on the picoeukaryote community. Journal of Plankton Research 27: 881–894.CrossRefGoogle Scholar
  7. Berg, G.M., P.M. Gilbert, and C. Chen. 1999. Dimension effects on enclosures on ecological processes in pelagic systems. Limnology and Oceanography 44: 1331–1340.CrossRefGoogle Scholar
  8. Bernard, L., H. Schäfer, F. Joux, C. Courties, G. Muyzer, and P. Lebaron. 2000. Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquatic Microbial Ecology 23: 1–11.CrossRefGoogle Scholar
  9. Blomqvist, P., A. Pettersson, and P. Hyenstrand. 1994. Ammonium-nitrogen—a key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Archiv für Hydrobiologie 132: 141–164.Google Scholar
  10. Breitburg, D.L., J.G. Sanders, and C.C. Gilmour. 1999. Variability responses to nutrients and trace element, and transmission of stressor effects through an estuarine food web. Limnology and Oceanography 44: 837–863.CrossRefGoogle Scholar
  11. Brzezinski, M.A. 1985. The Si-C-N ratio of marine diatoms-interspecific variability and the effect of some environmental variables. Journal of Phycology 21: 347–357.CrossRefGoogle Scholar
  12. Carter, C.M., A.H. Ross, D.R. Schiel, C. Howard-Williams, and B. Hayden. 2005. In situ microcosms on the influence of nitrate and Light on phytoplankton community composition. Journal of Experimental Marine Biology and Ecology 326: 1–13.CrossRefGoogle Scholar
  13. Castañeda, L.O., and F.E. Contreras. 2001. Serie bibliográfica comentada sobre ecosistemas costeros Mexicanos. México: UAMI- CEDELM. CD- ROM.Google Scholar
  14. CICESE. 2009. Programa MAR V0.9 para Windows.Google Scholar
  15. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  16. Cloern, J.E., and A.D. Jassby. 2010. Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries and Coasts 33: 230–241.CrossRefGoogle Scholar
  17. Collos, Y. 1986. Time-lag algal growth dynamics—biological constraints on primary production in aquatic environments. Marine Ecology Progress Series 33: 193–206.CrossRefGoogle Scholar
  18. Contreras, E. F. 2010. Ecosistemas costeros mexicanos una actualización. Universidad Autónoma Metropolitana.Google Scholar
  19. Contreras, E.F., N.E. Rivera-Guzmán, and R. Segura-Aguilar. 2005. Nutrientes y productividad primaria fitoplanctónica en una laguna costera tropical intermitente del Golfo de México. Hidrobiológica 15: 299–310.Google Scholar
  20. Cooper, J.A.G. 2001. Geomorphological variability among microtidal estuaries from the wave-dominated South African coast. Geomorphology 40: 99–122.CrossRefGoogle Scholar
  21. Cullen and MacIntyre. 1998. Behavior, physiology and the niche of depth-regulating phytoplankton. In: Physiological Ecology of Harmful Algal Blooms. Eds. Anderson, D.M., Cembella, A.D. and G. M. Hallegraeff. 559-580. NATO ASI Series.Google Scholar
  22. D’Elia, C.F., J.G. Sanders, and W.R. Boynton. 1986. Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large-scale, continuous cultures. Canadian Journal of Fisheries and Aquatic Sciences 43: 397–406.CrossRefGoogle Scholar
  23. de Jonge, VV. N., M. Elliot. 2001. Eutrophication. In Encyclopedia of Aquatic Sciences, Eds. Thorpe, S. A. and K. K. Turekian, 852-870. Elsevier Science.Google Scholar
  24. de la Lanza, E.G., and C. Cáceres-Martínez. 1994. Lagunas costeras y el litoral mexicano. México: Universidad Autónoma de Baja California Sur, La Paz, B. C. S.Google Scholar
  25. de la Lanza, E. G., S. Hernández-Pulido. 2012. Ambiente, biología, sociedad, manejo y legislación de sistemas costeros mexicanos. Universidad Michoacana de San Nicolas de Hidalgo. Plaza y Valdes Ed. 91 p.Google Scholar
  26. DeYoe, R.H., E.J. Buskey, and F.J. Jochem. 2007. Physiological responses of Aureumbra lagunensis and Synechococcus sp. to nitrogen addition in a mesocosms experiment. Harmful Algae 6: 48–55.CrossRefGoogle Scholar
  27. Diaz, R.J. 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30(275): 281.Google Scholar
  28. Domingues, R.B., A. Barbosa, and H. Galvão. 2005. Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuarine, Coastal and Shelf Science 64: 249–260.CrossRefGoogle Scholar
  29. Domingues, R.B., T.P. Anselmo, U. Sommer, and H.M. Galvao. 2011. Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary. Estuarine, Coastal and Shelf Science 91: 282–297.CrossRefGoogle Scholar
  30. Dortch, Q., and T.E. Whitledge. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12: 1293–1309.CrossRefGoogle Scholar
  31. Downing, J.A., C.W. Osenberg, and O. Sarnelle. 1999. Meta-analysis of marine nutrient-enrichment experiments: variation in the magnitude of nutrient limitation. Ecology 80: 1157–1167.CrossRefGoogle Scholar
  32. Duarte, C.M. 2004. The effect of nutrients additions on the partitioning of nutrients in an experimental Coastal Mediterranean system. Biogeochemistry 68: 153–167.CrossRefGoogle Scholar
  33. Duarte, C.M., S. Agustí, and M.P. Satta. 1998. Partitioning particulate light absorption—a budget for a Mediterranean bay. Limnology and Oceanography 43: 236–244.CrossRefGoogle Scholar
  34. Duarte, C.M., S. Agustí, and N.S.R. Agawin. 2000a. Response of a Mediterranean phytoplankton to increased nutrient inputs—a mesocosms experiment. Marine Ecology Progress Series 198: 61–70.CrossRefGoogle Scholar
  35. Duarte, C.M., S. Agustí, J. Gasol, D. Vaque, and E. Vázquez-Domínguez. 2000b. Effect of nutrient supply on the biomass structure of planktonic communities—an experimental test on a Mediterranean coastal community. Marine Ecology Progress Series 206: 87–95.CrossRefGoogle Scholar
  36. Egge, J.K., and D.L. Asknes. 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series 83: 281–289.CrossRefGoogle Scholar
  37. Elser, J.J., M.M. Elser, N.A. Mackay, and S.R. Carpenter. 1988. Zooplankton mediated transitions between N and P limited algal growth. Limnology and Oceanography 33: 1–14.CrossRefGoogle Scholar
  38. Escarvage, V., L. Peperzak, and T.C. Prins. 1995. The development of a Phaeocystis bloom in a mesocosm experiment in relation to nutrients, irradiance and coexisting algae. Ophelia 42: 55–74.CrossRefGoogle Scholar
  39. Estrada, M., M. Alcaraz, and C. Marrasé. 1987. Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms. Marine Ecology Progress Series 38: 267–281.CrossRefGoogle Scholar
  40. Eyre, R., and P. Balls. 1999. A comparative study of nutrient behavior along the salinity gradient of tropical and temperate estuaries. Estuaries 22: 313–326.CrossRefGoogle Scholar
  41. Felip, N., and J. Catalan. 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake—decoupling in their spatial and temporal maxima. Journal of Plankton Research 22: 91–105.CrossRefGoogle Scholar
  42. Finkel, Z.V., J. Beardall, K.J. Flynn, A. Qiugg, T.A. Rees, and J.A. Raven. 2010. Phytoplankton in a changing world—cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.CrossRefGoogle Scholar
  43. Fisher, T.R., E.R. Peele, J.W. Ammerman, and L.W. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology Progress Series 82: 51–63.CrossRefGoogle Scholar
  44. Fisher, T.R., J.M. Melack, J.U. Grobbelaar, and R.W. Howarth. 1995. Nutrient limitation of phytoplankton and eutrophication of inland, estuarine, and marine waters. In Phosphorus in the global cycle, ed. H. Tiessen, 301–322. New York: Wiley.Google Scholar
  45. Flores-Verdugo, F., P. Moreno-Casasola, C.M. Agraz-Hernández, H. López-Rosas, D. Benítez-Pardo, and A.C. Travieso-Bello. 2007. La topografía y el hidroperiodo- dos factores que condicionan la restauración de los humedales costeros. Boletín de la Sociedad Botánica de México 80: 33–47.Google Scholar
  46. Fong, P., J.B. Zedler, and R.M. Donohoe. 1993. Nitrogen vs. phosphorus limitation of algal biomass in shallow coastal lagoons. Limnology and Oceanography 38: 906–923.CrossRefGoogle Scholar
  47. Fouillaron, P.P., S.L. Claquin, P. Helguen, V. Huonnic, A. Martin-Jézéquel, S.N. Masson, P. Longphuirt, G.T. Pondaven, and A. Leynaert. 2007. Response of a phytoplankton community to increased nutrient inputs—a mesocosms experiment in the Bay of Brest (France). Journal of Experimental Marine Biology and Ecology 351: 188–198.CrossRefGoogle Scholar
  48. Frangópulos, M., C. Guisande, C. Deblas, and I. Maneiro. 2004. Toxin production and competitive abilities under phosphorus limitation of Alexandrium species. Harmful Algae 3: 131–139.CrossRefGoogle Scholar
  49. Furnas, M.J. 1990. In situ growth rates of marine phytoplankton—approaches to measurement, community and species growth rates. Journal of Plankton Research 12: 1117–1151.CrossRefGoogle Scholar
  50. Gallardo, R.J.J., G.M.C. Cerón, C.F. García, S.A. Mirón, E.H. Belarbi, and E.M. Grima. 2008. New culture approaches for yessotoxin production from the Dinoflagellate Protoceratium reticulatum. Biotechnology Progress 23: 339–350.Google Scholar
  51. García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Quinta Edición, Instituto de Geografía-­‐ UNAM. 90 p.Google Scholar
  52. Gilabert, J. 2001. Seasonal plankton dynamics in a Mediterranean hypersaline Coastal lagoon—the Mar Menor. Journal of Plankton Research 23: 207–217.CrossRefGoogle Scholar
  53. Gilbert, P.M. 1998. Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiologia 363: 1–12.CrossRefGoogle Scholar
  54. Gilpin, L.C., K. Davidson, and E. Roberts. 2004. The influence of changes in nitrogen: silicon ratios on diatom growth dynamics. Journal of Sea Research 51: 21–35.CrossRefGoogle Scholar
  55. Guillard. 1973. Division rates. In Handbook of phycological methods Vol, I, ed. J. Stein, 289–312. New York: Cambridge Univ, Press.Google Scholar
  56. Guisande, C., M. Frangópulos, I. Maneiro, A.R. Vergara, and I. Riveiro. 2002. Ecological advantages of toxin production by the dinoflagellate Alexandrium minutum under phosphorus limitation. Marine Ecology Progress Series 225: 169–176.CrossRefGoogle Scholar
  57. Hasle, G. R. 1978. Using the inverted microscope. In Phytoplankton Manual, 191- 196. Ed. Sournia, A.Google Scholar
  58. Hecky, R.E., and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments—a review of recent evidence on the effect of enrichment. Limnology and Oceanography 33: 796–822.CrossRefGoogle Scholar
  59. Hernández-Becerril, D.U. 2000. Morfología y Taxonomía de algunas de las especies de diatomeas del género Coscinodiscus de las costas del Pacífico mexicano. Revista de Biología Tropical 48: 7–18.Google Scholar
  60. Hernández-Trejo, H., A.G. Priego-Santander, J. López-Portillo, and E. Isunza-Vera. 2006. Los paisajes físico-geográficos de los manglares de la laguna de La Mancha, Veracruz, México. Interciencia 31: 211–219.Google Scholar
  61. Hitchcock, J. N., mitrovic, S. M., Kobayashi, T., and D. P. Westhorpe. 2010. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries and Coasts 33: 78–91.Google Scholar
  62. Hlaili, A.S., M.A. Chikhaoui, and H.H. Mabrouk. 2006. Effects of N and P supply on phytoplankton in Bizerte Lagoon (western Mediterranean). Journal of Experimental Marine Biology and Ecology 333: 79–96.CrossRefGoogle Scholar
  63. Klug, J.L., J.M. Fisher, A.R. Ives, and B. Dennis. 2000. Compensatory dynamics in planktonic community responses to pH perturbations. Ecology 81: 387–398.CrossRefGoogle Scholar
  64. Kozlowsky-Suzuki, B., and R.L. Bozelli. 2002. Experimental evidence of the effect of nutrient enrichment on the zooplankton in a Brazilian coastal lagoon. Brazilian Journal of Biology 62: 835–846.CrossRefGoogle Scholar
  65. Lagus, A., Suomela, J., Weithoff, G., Heikkila, K., Helminen, H., and J. Sipura. 2004. Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. Journal of Plankton Research 26: 779–798.Google Scholar
  66. Lankford, R. R. 1977. Coastal lagoon of Mexico. Their origins and classification. In Estuarine processes. Ed Wiley, M. 182–215. Academic Press Inc.Google Scholar
  67. Lara-Domínguez, A. L., J. W. Day, A. Yáñez-Arancibia, E. Sainz-Hernández. 2006. A dynamic characterization of water flux through a tropical ephemeral inlet, La Mancha lagoon, Gulf of Mexico. In, Coastal hydrology and processes- proceedings of the AIH 25th Anniversary Meeting and International Conference “Challenges in Coastal Hydrology and water quality”. Section 7- Coastal Processes and analysis. Eds.Sing, V.P y Y. J. Xu, 34- 413-422.Google Scholar
  68. le Williams, P.J.B., and J.K. Egge. 1998. The management and behavior of the mesocosms. Estuarine, Coastal and Shelf Science 46: 3–14.CrossRefGoogle Scholar
  69. Legaria, M.L. 2003. Dinámica del fitoplancton y su relación con variables físico-químicas en la laguna costera La Mancha, Ver., Méx. Tesis de licenciatura. Xalapa: Universidad Veracruzana, Facultad de Biología. 132 p.Google Scholar
  70. Licea, S., J.L. Moreno, and H. Santoyo. 1995. Dinoflageladas del Golfo de California. México: México. Universidad Autónoma de Baja California Sur. 165 pp.Google Scholar
  71. Ling, R.N.N., R.E. Rabalais, W.M. Turner, and W. Mendenhall. 2009. Nutrient limitation on phytoplankton growth in the upper Barataria Basin, Louisiana: microcosm bioassays. Estuaries and Coasts 32: 958–974.CrossRefGoogle Scholar
  72. Loureiro, S., A. Newton, and J. Icely. 2005. Effects of nutrient enrichment on primary production in the Ria Formosa Coastal lagoon (Southern Portugal). Hydrobiologia 550: 29–45.CrossRefGoogle Scholar
  73. Mallin, M.A., and H.W. Pearl. 1992. Effects of variable irradiance on phytoplankton productivity in shallow estuaries. Limnology and Oceanography 37: 54–62.CrossRefGoogle Scholar
  74. Margalef, R., M. Estrada, and D. Blasco. 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In Toxic Dinoflagellate Blooms, ed. D. Taylor and H. Seliger, 89–94. New York: Elsevier.Google Scholar
  75. Marie, D., N. Simon, D. Vaulot. 2005. Phytoplankton Cell Counting by Flow Cytometry. In, Algal culturing techniques. 253- 268. ed. Andersen, R. A. Elsevier Academic Press.Google Scholar
  76. Martínez-López, A., D. Escobedo-Urías, S.A. Reyes, and R.M.T. Hernández. 2007. Phytoplankton response to nutrient runoff in a large lagoon system in the Gulf of California. Hidrobiológica 17: 101–112.Google Scholar
  77. Mc Garigal, K., S. Cushman, and S. Stafford. 2000. Multivariate statistics for wildlife and ecology research. New York: Springer-Verlag New York, Inc. 283 pp.CrossRefGoogle Scholar
  78. Mee, D. 1977. Coastal lagoons. In Chemical Oceanography. Ed. Riley, J. P. and R. Chester. 42- 441.Google Scholar
  79. Micheli, F. 1999. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285: 1396–1399.CrossRefGoogle Scholar
  80. Morales-Ojeda, S.M., J.A. Herrera-Silveira, and J. Montero. 2010. Terrestrial and oceanic influence on spatial hydrochemistry and trophic status in subtropical marine near-shore waters. Water Research 44: 5949–5964.CrossRefGoogle Scholar
  81. Moreira-Turcq, P.F., J.M. Martin, and A. Fleury. 1993. Chemical and biological characterization of particles by flow cytometry in the Krka estuary, Croatia. Marine Chemistry 43: 115–126.CrossRefGoogle Scholar
  82. Moreira-Turcq, P.F., G. Cauwet, and J.M. Martin. 2001. Contribution of flow cytometry to estimate picoplankton biomass in estuarine systems. Hydrobiologia 462: 157–168.CrossRefGoogle Scholar
  83. Moreno, J.L., S. Licea, and H. Santoyo. 1995. Diatomeas del Golfo de California. México: México. Universidad Autónoma de Baja California Sur. 273 pp.Google Scholar
  84. Moreno-Casasola, P., H. López-Rosas, D. Infante-Mata, L.A. Peralta, A.C. Travieso-Bello, and B.G. Warner. 2009. Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecology 200: 37–52.CrossRefGoogle Scholar
  85. Murphy, J., and P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analitica Chemica Acta 27: 31–36.CrossRefGoogle Scholar
  86. Murrell, M.C., and E.M. Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary—importance of cyanobacteria. Journal of Plankton Research 26: 371–382.CrossRefGoogle Scholar
  87. Olson, R.J., S.W. Chisholm, E.R. Zettler, and E.V. Armbrust. 1988. Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep Sea Research 35: 425–440.CrossRefGoogle Scholar
  88. Örnòlfsdòttir, E. B., Lumsden, s. E. and J. L. Pinckney. 2004. Phytoplankton community growth-rate response to nutrient pulses in a shallow turbid estuary, Galveston Bay, Texas. Journal of Plankton Research 26: 325–339.Google Scholar
  89. Ortega, M.M. 1984. Catálogo de algas continentales recientes de México. México: UNAM. 566 pp.Google Scholar
  90. Perrow, M.R., M.L. Meijer, P. Dawidowicz, and H. Coops. 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342(343): 355–365.CrossRefGoogle Scholar
  91. Petersen, J.E., W. Michael Kemp, R. Bartleson, W.R. Boynton, C.-C. Chen, J.C. Cornwell, R.H. Gardner, D.C. Hinkle, E.D. Houde, T.C. Malone, W.P. Mowitt, L. Murray, L.P. Sanford, J. Court Stevenson, K.L. Sundberg, and S.E. Suttles. 2003. Multiscale experiments in coastal ecology: improving realism and advancing theory. BioScience 53: 1181–1197.CrossRefGoogle Scholar
  92. Phlips, E.J., S.T. Badylak, and C. Lynch. 1999. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnology and Oceanography 44: 1166–1175.CrossRefGoogle Scholar
  93. Pitt, A.K., M.J. Kingsford, D. Rissik, and K. Koop. 2007. Jellyfish modify the response of planktonic assemblages to nutrient pulses. Marine Ecology Progress Series 351: 1–13.CrossRefGoogle Scholar
  94. Raven, J., B. Woolenweber, and L. Handley. 1992. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytologist 121: 19–32.CrossRefGoogle Scholar
  95. Redfield, A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–222.Google Scholar
  96. Redfield A. C., B. H. Ketchum, F. A. Richards. 1963. The influence of the organisms on the composition of seawater. In: The Sea, Vol. 2. ed. Hill M. N., 26-77. New York. WileyGoogle Scholar
  97. Reynolds, C.S. 1987. Community organization in the freshwater plankton. Symposium British Ecological Society 27: 297–325.Google Scholar
  98. Rivera-Guzmán, N. E. 2004. Evaluación espacio-temporal de la productividad primaria en la columna de agua en la laguna de La Mancha, Ver. Informe final de servicio social. UAM-I. 44 p.Google Scholar
  99. Rivera-Monroy, V.H., R.R. Twilley, J.E. Mancera-Pineda, C.J. Madden, A. Alcantara-Eguren, E.B. Moser, B.F. Jonsson, E. Castaneda-Moya, O. Casas-Monroy, P. Reyes-Forero, and J. Restrepo. 2011. Salinity and chlorophyll a as performance measures to rehabilitate a mangrove-dominated deltaic coastal region: the Cienaga Grande de Santa Marta-Pajarales Lagoon Complex, Colombia. Estuaries and Coasts 34: 1–19.CrossRefGoogle Scholar
  100. Roberts, E. C., Davidson, K. and L. C. Gilpin. 2003. Response to temperate microplankton communities to N:Si ratio pertubation. Journal of Plankton Research 25: 1485–1495Google Scholar
  101. Rocha, C.H., and A.B.. Galvão. 2002. Role of transient silicon limitation in the development of cyanobacteria blooms in the Guadiana estuary, south-western Iberia. Marine Ecology Progress Series 228: 35–42.Google Scholar
  102. Rosales, N., C. Loreto, J. Bermudez, and E. Morales. 2004. Intermediate renewal rates enhance the productivity of the cyanobacterium Synechococcus sp. in semicontinuous cultures. Cryptogamie Algologie 25: 207–216.Google Scholar
  103. Round, F.E., R.M. Crawford, and D.G. Mann. 1990. The diatoms. Biology and morphology of the genera. Cambridge: University Press.Google Scholar
  104. Sánchez-Gil, P., A. Yáñez-Arancibia, J. Ramírez-Gordillo, J.W. Day, and P.H. Templet. 2004. Some socio-economic indicators in the Mexican states of the Gulf of Mexico. Ocean and Coastal Management 47: 581–596.CrossRefGoogle Scholar
  105. Sanvicente-Añorve, L., C. Flores-Coto, and X. Chiappa-Carrara. 2000. Temporal and spatial scales of ichthyoplankton distribution in the Southern Gulf of Mexico. Estuarine, Coastal and Shelf Science 51: 463–475.CrossRefGoogle Scholar
  106. Sarthou, G., K.R. Timmermans, S. Blain, and P. Tréguer. 2005. Growth physiology and fate of diatoms in the ocean—a review. Journal of Sea Research 53: 25–42.CrossRefGoogle Scholar
  107. Schwartz, M.C. 1942. Photometric determination of silica in presence of phosphates. Industrial and Engineering Chemistry, Analytical Edition 14: 893–895.CrossRefGoogle Scholar
  108. SCOR-UNESCO. 1980. Determination of photosynthetic pigments in sea water. Paris: UNESCO Monographs on Oceanographic Methodology, 1. 69 pp.Google Scholar
  109. Smayda, T.J., and C.S. Reynolds. 2001. Community assembly in marine phytoplankton—application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23: 447–461.CrossRefGoogle Scholar
  110. Smayda, T.J., and C.S. Reynolds. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research 49: 95–106.CrossRefGoogle Scholar
  111. Solórzano, L. 1969. Determination of ammonia in natural water by phenol-hypochlorite method. Limnology and Oceanography 14: 799–801.CrossRefGoogle Scholar
  112. Sommer, U. 1984. The paradox of plankton—fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography 29: 366–636.CrossRefGoogle Scholar
  113. Sommer, U. 1985. Differential migration of cryptophyceae in Lake Constance. Contributions in Marine Science 27: 166–175.Google Scholar
  114. Sorokin, P.Y., Y.I. Sorokin, R. Boscolo, and O. Giovanardi. 2004. Bloom of picocyanobacteria in the Venice lagoon during summer-autumn 2001- ecological sequences. Hydrobiologia 523: 71–85.CrossRefGoogle Scholar
  115. Strickland, J., T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, 310 pp.Google Scholar
  116. Sun, J., and D. Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  117. Svensen, C., J.K. Egge, and Y.J.E. Stiansen. 2001. Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study. Marine Ecology Progress Series 217: 67–80.CrossRefGoogle Scholar
  118. Tomas, C.R. 1997. Identifying marine phytoplankton. San Diego: Academic.Google Scholar
  119. Travieso-Bello, A.C. 2000. Biodiversidad del paisaje costero de La Mancha, Actopan, Veracruz. Tesis. Xalapa: Instituto de Ecología, A. C. 119 pp.Google Scholar
  120. UNESCO. 1991. Manual on marine experimental ecosystems. Paris: UNESCO Technical papers in marine science. 61. 178 p.Google Scholar
  121. Utermöhl, H. 1958. Zur Vervollkommnung der quentitativen Phytoplankton-Methodik. Mitteilungen der International Vereinigung fur heorestische und Angewandte Limnologie 9: 1–38.Google Scholar
  122. Utrera-López, M., and P. Moreno-Casasola. 2008. Mangrove litter dynamics in La Mancha Lagoon, Veracruz, México. Wetlands Ecology and Management 16: 11–22.CrossRefGoogle Scholar
  123. Varona-Cordero, F. 2011. Influencia de las condiciones físico-químicas sobre el fitoplancton y su respuesta al enriquecimiento de nutrientes en mesocosmos en lagunas costeras mexicanas. Tesis de Doctorado: Universidad Autónoma Metropolitana, DCBS.Google Scholar
  124. Vidussi, F., H. Claustre, J.J. Bustillos-Guzmán, C. Cailleau, and J.C. Marty. 1996. Determination of chlorophylls and carotenoids of marine phytoplankton—separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein. Journal of Plankton Research 18: 2377–2382.CrossRefGoogle Scholar
  125. Villalobos-Figueroa, A., E. De la Parra, B. Galván, O. Cacho, and M. Izaguirre. 1984. Estudio hidrobiológico en la Laguna de La Mancha, Municipio de Actopan, Veracruz. 1979– 1980. Xalapa: Cuadernos de Divulgación num. 15, Instituto Nacional de Investigaciones sobre Recursos Bióticos.Google Scholar
  126. Vuorio, K., Lagus, A., Lehtimäki, J., Suomela, J and H. Helminen. 2005. Phytoplankton community responses to nutrient and iron enrichment under different nitrogen and phosphorus ratios in the Northern Baltic Sea. Journal of Experimental Marine Biology and Ecology 322: 39–52.Google Scholar
  127. Wu, J.T., and T.L. Chou. 2003. Silicate as the limit nutrient for phytoplankton in a subtropical eutrophic estuary of Taiwan. Estuarine, Coastal and Shelf Science 58: 155–162.CrossRefGoogle Scholar
  128. Wyman, M., R.P.F. Gregory, and N.G. Carr. 1985. Novel role for phycoerythrin in a marine cyanobacterium Synechococcus strain DC2. Science 230: 818–820.CrossRefGoogle Scholar
  129. Xu, H., H.W. Paerl, B. Qin, G. Zhu, and G. Gao. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu. Limnology and Oceanography 55: 420–432.CrossRefGoogle Scholar
  130. Zar, J.H. 1997. Biostatistical Analysis. Englewood Clifs: Prentice Hall. 663 p.Google Scholar
  131. Zou, L., J. Zhang, W.-X. Pan, and Y.-P. Zhan. 2001. In situ nutrient enrichment experiments in the Bohai and Yellow Sea. Journal of Plankton Research 23: 1111–1119.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Francisco Varona-Cordero
    • 1
  • Francisco J. Gutiérrez-Mendieta
    • 1
  • Victor H. Rivera-Monroy
    • 2
  1. 1.Laboratorio de Ecosistemas Costeros, Departamento de Hidrobiología, DCBSUniversidad Autónoma Metropolitana, IztapalapaMéxico, D. F.Mexico
  2. 2.Department of Oceanography and Coastal Sciences, School of the Coast and EnvironmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations