Estuaries and Coasts

, Volume 38, Issue 1, pp 179–191 | Cite as

Carbon Flows Through the Pelagic Sub-food Web in Two Basins of the Chilean Patagonian Coastal Ecosystem: the Significance of Coastal–Ocean Connection on Ecosystem Parameters

  • Héctor J. Pavés
  • Humberto E. González
  • Leonardo Castro
  • José L. Iriarte
Article

Abstract

The fjords and channels of the Chilean Patagonia are unique, and their high biological diversity is mainly associated with physicochemical characteristics of local water masses. The topography, depth, and extension of the Patagonian basins affect the extent to which water is exchanged between the inner and outer parts of the fjords, determining the marine productivity, biomass levels and energy flows through the pelagic food web. Coastal basins with high connectivity to the adjacent ocean and nutrient supply (e.g., the Inner Sea of Chiloe (ISCh)) might be predicted to have higher productivity and biomass than the relatively shallow, small-sized fjords and channels (e.g., Moraleda Channel (MCh)). To determine the ecotrophic and ecosystem-level similarities and differences of these two basins, we built two static and mass-balanced trophic models using Ecopath software. The models of planktonic communities were based on data collected during three scientific cruises conducted in 2006 and 2007. Diet, secondary production, and consumption rates were obtained from previously published data. The models’ results suggested that areas adjacent to the ocean (ISCh) had 61 % higher biomass, 44 % more biomass consumed, and a 17 % greater efficiency in the transfer of energy than inshore (MCh) areas. By characterizing the trophic position and linkages of the planktonic groups with a multi-taxa approach, we were able to analyze the roles of key species and functional groups that modulate the described biomass and energy flows under different conditions in two basins of the Chilean Patagonian coastal system.

Keywords

Ecopath Microbial loop Traditional food web Patagonian coastal ecosystem 

Supplementary material

12237_2014_9780_MOESM1_ESM.doc (164 kb)
ESM 1(DOC 164 kb)

References

  1. Allen, K.R. 1971. Relation between production and biomass. Journal of the Fisheries Research Board of Canada 28: 1573–1581.CrossRefGoogle Scholar
  2. Antacli, J.D., M.E. Hernández, and Sabatini. 2010. Estimating copepods’ abundance with paired nets: Implications of mesh size for population studies. Journal of Sea Research 63: 1–77.CrossRefGoogle Scholar
  3. Arbach, F., N. Desroy, P. Le Mao, D. Pauly, and O. Le Pape. 2008. Interactions between a natural food web, shellfish farming and exotic species: The case of the Bay of Mont Saint Michel (France). Estuarine, Coastal and Shelf Science 76: 111–120.CrossRefGoogle Scholar
  4. Assmy, P., and V. Smetacek. 2009. Algal blooms. In Enciclopedia of microbiology, ed. M. Schaechter, 27–41. Amsterdam: Elsevier.CrossRefGoogle Scholar
  5. Avaria, S., C. Caceres, and P.D. Muñoz. 2004. Distribution of marine microphytoplankton between Golfo Corcovado and Estero Elefantes in spring 1998 and summer 1999 (Cimar 4 fiordos cruise). Ciencia y Tecnologia del Mar 27(1): 17–47.Google Scholar
  6. Bustos, C.A., M.F. Landaeta, and F. Balbontín. 2011. Ichthyoplankton spatial distribution and its relation with water column stratification in fjords of southern Chile (46°48′–50°09′S) in austral spring 1996 and 2008. Continental Shelf Research 31: 293–303.CrossRefGoogle Scholar
  7. Cassis, D., P. Muñoz, and S. Avaria. 2002. Variación temporal del fitoplancton entre 1993 y 1998 en una estación fija del seno Aysén, Chile (45 °26′S 73 °00′W). Revista de Biología Marina y Oceanografía 37(1): 43–65.CrossRefGoogle Scholar
  8. Christensen, V. 1995. Ecosystem maturity—towards quantification. Ecological Modelling 77: 3–32.CrossRefGoogle Scholar
  9. Christensen, V., and C. Walters. 2004. Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling 172: 109–139.CrossRefGoogle Scholar
  10. Christensen, V., C. Walters, and D. Pauly. 2000. Ecopath with Ecosim: A user’s guide. Penang: Fisheries Centre, University of British Columbia, Vancouver, Canada and ICLARM.Google Scholar
  11. Cornejo-Donoso, J., and T. Antezana. 2008. Preliminary trophic model of the Antarctic Peninsula Ecosystem (Sub-area CCAMLR 48.1). Ecological Modelling 218: 1–17.CrossRefGoogle Scholar
  12. Davila, P., D. Figueroa, and E. Muller. 2002. Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55 °S). Continental Shelf Research 22: 521–534.CrossRefGoogle Scholar
  13. DGA. 2009. Dirección General de Aguas. Data no publicada de precipitation caída durante los años 2007 y 2008 en la región de Los Lagos y Aysen, Chile. www.dga.cl. Accessed 6 October 2009.
  14. Fabiano, M., P. Povero, R. Danovaro, and C. Misic. 1999. Particulate organic matter composition in a semi-enclosed Periantartic system: The straits of Magellan. Scientia Marina 63: 89–98.CrossRefGoogle Scholar
  15. Gallienne, C.P., and D.B. Robins. 2001. Is Oithona the most important copepod in the world’s oceans? Journal of Plankton Research 23(12): 1421–1432.CrossRefGoogle Scholar
  16. Giesecke, R., and H.E. González. 2004. Feeding of Sagitta enflata and vertical distribution of chaetognaths in relation to low oxygen concentrations. Journal of Plankton Research 26(4): 475–486.CrossRefGoogle Scholar
  17. González, H.E., M.J. Calderón, L. Castro, A. Clement, L. Cuevas, G. Daneri, J.L. Iriarte, L. Lizárraga, R. Martínez, E. Menschel, N. Silva, C. Carrasco, C. Valenzuela, C.A. Vargas, and C. Molinet. 2010. Primary production and its fate in the pelagic food web of the Reloncaví Fjord and plankton dynamics of the Interior Sea of Chiloé. Northern Patagonia, Chile Marine Ecology Progress Series 402: 13–30.CrossRefGoogle Scholar
  18. González, H.E., L. Castro, G. Daneri, J.L. Iriarte, N. Silva, C. Vargas, R. Giesecke, and N. Sánchez. 2011. Seasonal plankton variability in Chilean Patagonia Fjords: Carbon flow through the pelagic food web of the Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Continental Shelf Research 31(3–4): 225–243.CrossRefGoogle Scholar
  19. Hajdu, E., P. Willenz, G. Lobo-Hajdu, R. Desqueyroux-Faundez, M. Carvalho, V. Häussermann, G. Försterra, and M. Scuteri. 2006. Marine sponges biodiversity. Project AMBARC-diving and wading in South America. Global Marine Environment 4: 28–29.Google Scholar
  20. Häussermann, V. 2006. Biodiversity of Chilean sea anemones (Cnidaria: Anthozoa): Distribution patterns and biogeographic implications; including new records for the fjord region. Investigaciones Marinas 34(2): 23–35.CrossRefGoogle Scholar
  21. Hoffman, J.C., D.A. Bronk, and J.E. Olney. 2008. Organic matter sources supporting lower food web production in the tidal freshwater portion of the York River Estuary, Virginia. Estuaries and Coasts 31: 898–911.CrossRefGoogle Scholar
  22. Hucke-Gaete, R., L.P. Osman, C.A. Moreno, K.P. Findlay, and D.K. Ljungblad. 2004. Discovery of a blue whale feeding and nursing ground in southern Chile. Proceeding of Royal Society of London. Biological Science 271(4): S170–S173.CrossRefGoogle Scholar
  23. Iriarte, J.L., and H.E. González. 2004. Phytoplankton size structure during and after the 1997/98 El Niño in a coastal upwelling area of the northern Humboldt Current System. Marine Ecology Progress Series 269: 83–90.CrossRefGoogle Scholar
  24. Iriarte, J., H.E. González, K.K. Liu, C. Rivas, and C. Valenzuela. 2007. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43 °S). Estuarine. Coastal and Shelf Science 74: 471–480.CrossRefGoogle Scholar
  25. Jarre-Teichmann, A. 1995. Seasonal models of carbon flow in the central Baltic Sea with emphasis on the upper trophic levels. ICES CM 1995/T: 6.Google Scholar
  26. Jarre-Teichman, A., and V. Christensen. 1998. Comparative modeling of trophic flows in four large upwelling ecosystems: global versus local effects. In: Global versus local changes in upwelling systems, eds. M. Durand, P. Cury, R. Mendelson, C. Roy, A. Bakun, D. Pauly. Edition de L’Orstom.Google Scholar
  27. Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29: 1–72.CrossRefGoogle Scholar
  28. Maranger, R.J., M.L. Pace, P.A. del Giorgio, N.F. Caraco, and J.J. Cole. 2005. Longitudinal spatial patterns of bacterial production and respiration in a large river-estuary: Implications for ecosystem carbon consumption. Ecosystems 8: 318–330.CrossRefGoogle Scholar
  29. Moloney, C.L., M.A. St. John, K.L. Denman, D.M. Karl, F.W. Köster, S. Sundby, and R.P. Wilson. 2010. Weaving marine food webs from end to end under global change. Journal of Marine Systems 84(3–4): 106–116.Google Scholar
  30. Morissette, L., T. Pedersen, and M. Nilsen. 2009. Comparing pristine and depleted ecosystems: The Sørfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems. Progress in Oceanography 81(1–4): 174–187.CrossRefGoogle Scholar
  31. Neira, S., and H. Arancibia. 2004. Trophic interactions and community structure in the upwelling system off Central Chile (33–39°S). Journal of Experimental Marine Biology and Ecology 312: 349–366.CrossRefGoogle Scholar
  32. Neira, S., H. Arancibia, and L. Cubillos. 2004. Comparative analysis of trophic structure of commercial fishery species off Central Chile in 1992 and 1998. Ecological Modelling 172: 233–248.CrossRefGoogle Scholar
  33. Odum, E. 1969. The strategy of ecosystem development. Science 164: 262–270.CrossRefGoogle Scholar
  34. Odum, E., and E. Heald. 1975. The detritus-based food web of an estuarine mangrove community. In Estuarine research, vol. 1, ed. L.E. Cronin, 265–286. New York: Academic.Google Scholar
  35. Pantoja, S., J.L. Iriarte, M. Gutiérrez, and C. Calvete. 2010. Subpolar margin: Southern Chile, in: Carbon and nutrient fluxes in continental margins: a global synthesis. Global Change, eds, K. K. Liu, L. Atkinson, R. Quiñones, L. Talaue-McManus, 265–272. The IGBP Series, SpringerGoogle Scholar
  36. Palma, S., and N. Silva. 2004. Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-Sea Research Part II: Topical Studies in Oceanography 51: 513–535.CrossRefGoogle Scholar
  37. Pauly, D., V. Christensen, and C. Walters. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. The ICES Journal of Marine Science 57(3): 697–706.CrossRefGoogle Scholar
  38. Pavés, H., and H. González. 2008. Carbon fluxes within the pelagic food web in the coastal area off Antofagasta (23°S), Chile: The significance of the microbial versus classical food webs. Ecological Modelling 212: 218–232.CrossRefGoogle Scholar
  39. Pavés, H., and R. Schlatter. 2008. Temporada reproductiva del lobo fino austral, Arctocephalus australis (Zimmermann 1783) en la Isla Guafo, Chiloé, Chile. Revista Chilena de Historia Natural 81(1): 137–149.CrossRefGoogle Scholar
  40. Pavés, H., H.E. González, and V. Christensen. 2013. Status, structure, and functioning of the pelagic communities in the North Chilean Patagonian Coastal System. Hydrobiology 717(1): 85–108.CrossRefGoogle Scholar
  41. Perakis, S.S., and L.O. Hedin. 2002. Nitrogen loss from unpolluted South American forests via dissolved organic compounds. Nature 415: 416–419.CrossRefGoogle Scholar
  42. Raymond, P.A., and J.E. Bauer. 2000. Bacterial consumption of DOC during transport through a temperate estuary. Aquatic Microbial Ecology 22: 1–12.CrossRefGoogle Scholar
  43. Reyes-Arriagada, R., P. Campos-Ellwanger, R.P. Schlatter, and C. Baduini. 2007. Sooty shearwater (Puffinus griseus) on Guafo Island: The largest seabird colony in the world? Biodiversity and Conservation 16: 913–930.CrossRefGoogle Scholar
  44. Reyes-Arriagada, R., P. Campos-Ellwanger, and R.P. Schlatter. 2009. Avifauna de Isla Guafo. Boletín Chileno de Ornitología 15(1): 35–43.Google Scholar
  45. Reynolds, C. 2008. A changing paradigm of pelagic food webs. International Review of Hydrobiology 93(4–5): 517–531.CrossRefGoogle Scholar
  46. Riccardi, N. 2010. Selectivity of plankton nets over mesozooplankton taxa: Implications for abundance, biomass and diversity estimation. Journal of Limnology 69(2): 287–296.CrossRefGoogle Scholar
  47. Sherr, B., and E. Sherr. 1988. Role of microbes in pelagic food webs: A revised concept. Limnology and Oceanography 33(5): 1225–1227.CrossRefGoogle Scholar
  48. Silva, N., and R. Prego. 2002. Carbon and nitrogen spatial segregation and stoichiometry in the surface sediments of southern Chilean inlets (41°–56°S) Estuarine. Coastal and Shelf Science 55: 763–775.CrossRefGoogle Scholar
  49. Silva, N., and S. Palma. 2008. Progress in the oceanographic knowledge of Chilean Interior Waters, from Puerto Montt to Cap Horn. Valparaíso: Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso.Google Scholar
  50. Stehle, M., A. Dos Santos, and H. Queiroga. 2007. Comparison of zooplankton sampling performance of Longhurst–Hardy Plankton Recorder and Bongo nets. Journal of Plankton Research 29(2): 169–177.CrossRefGoogle Scholar
  51. Tam, J., M. Taylor, V. Blaskovic, P. Espinoza, P. Michael, E. Díaz, C. Wosnitza-Mendo, J. Argüelles, S. Purca, P. Ayónm, L. Quipuzcoa, D. Gutiérrez, E. Goya, N. Ochoa, and M. Wolff. 2008. Trophic modeling of the Northern Humboldt Current Ecosystem, Part I: Comparing trophic linkages under La Niña and El Niño conditions. Progress in Oceanography 79(2–4): 352–365.CrossRefGoogle Scholar
  52. Vargas, C., and L. Madin. 2004. Zooplankton feeding ecology: Clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. Journal of Plankton Research 26(6): 1–7.Google Scholar
  53. Vargas, C., R. Martínez, L. Cuevas, M. Pavez, C. Cartes, H.E. González, R. Escribano, and G. Daneri. 2007. Interplay between microbial and classical food webs in a highly productive coastal upwelling area. Limnology and Oceanography 52: 1495–1510.CrossRefGoogle Scholar
  54. Vargas, C.A., R.A. Martínez, H.E. González, and N. Silva. 2008. Contrasting trophic interactions of microbial and copepod communities in a fjord ecosystem, Chilean Patagonia. Aquatic Microbial Ecology 53: 227–242.CrossRefGoogle Scholar
  55. Winberg, G.G. 1956. Rate of metabolism and food requirements of fishes. Fisheries Research Board of Canada Translations Series 253: 1–202.Google Scholar
  56. Wolff, M., H. Hartmann, and W. Koch. 1996. A pilot trophic model for Golfo Dulce, a fjord-like tropical embayment, Costa Rica. Revista de Biología Tropical 44(3): 215–231.Google Scholar
  57. Zamorano, J., J. Gibbons, and J. Capella. 2010. Diversity and summer distribution of cetaceans in inlet waters of northern Aisén, Chile. Anales Instituto Patagonia (Chile) 38(1): 151–157.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Héctor J. Pavés
    • 1
  • Humberto E. González
    • 1
    • 2
    • 3
    • 4
  • Leonardo Castro
    • 2
    • 4
    • 5
  • José L. Iriarte
    • 3
    • 4
    • 6
  1. 1.Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Oceanografía Biológica (LOCEB)Universidad Austral de ChileValdiviaChile
  2. 2.Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS)Universidad de ConcepciónConcepciónChile
  3. 3.Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
  4. 4.COPAS Sur-Austral PFB-31/2007Universidad de ConcepciónConcepciónChile
  5. 5.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  6. 6.Instituto de AcuiculturaUniversidad Austral de ChilePuerto MonttChile

Personalised recommendations