Estuaries and Coasts

, Volume 37, Issue 6, pp 1376–1387 | Cite as

Hydrologic Dynamics of a Subtropical Estuary Using Geochemical Tracers, Celestún, Yucatan, Mexico

  • Jeremy C. Stalker
  • Rene M. Price
  • Victor H. Rivera-Monroy
  • Jorge Herrera-Silveira
  • Sara Morales
  • Jorge A. Benitez
  • David Alonzo-Parra
Article

Abstract

Oxygen isotopes and strontium concentrations were used as geochemical tracers to discern the sources of water to Celestún Lagoon, a small subtropical estuary on the western side of the Yucatán Peninsula of Mexico. Celestún Lagoon is underlain by karstified limestone with numerous locations where groundwater is observed discharging directly to the lagoon. In this study, samples of groundwater, lagoon surface water, and seawater (SW) were collected in April 2008 and June 2009 and analyzed for salinity, stable isotopes of oxygen, and strontium (Sr2+) concentrations. These geochemical tracers were used in two tertiary mixing models to calculate the relative ratio inputs of fresh groundwater, brackish groundwater, and SW to the lagoon. Two sources of groundwater were found to contribute to the surface water in the lagoon; one fresh and the other brackish with an average salinity of 19 psu. The fresh groundwater had an oxygen isotopic signature (δ18O) and strontium concentration (Sr2+) of δ18O = -3.30‰ and Sr2+ = 0.03 mmol/l, respectively. The brackish groundwater observed in the northern end of the lagoon add a dissimilar oxygen isotopic signature and Sr2+ concentration of δ18O = 3.01‰ and Sr2+ = 0.12 mmol/l, respectively. Local SW had an isotopic oxygen signature and Sr2+ concentration between the two fresher sources (δ18O = 1.40‰, Sr2+ = 0.09 mmol/l). The lagoonwide results of the two tracer mixing models (δ18O and Sr2+) agreed well (within 5 %) and indicated a ratio of brackish groundwater–fresh groundwater– SW of 31 %–26 %–43 % (±5 %) for the Sr2+ model and 35 %–25 %–40 % (± 5 %) for the δ18O model. Brackish groundwater is dominant in the northern portion of the lagoon, while SW dominates the southern portion. Fresh groundwater discharge is a significant contributor of water along the entire eastern boundary of the lagoon where mangrove forests are the dominant vegetation.

Keywords

Yucatan Groundwater Stable isotopes Submarine groundwater discharge Mexico 

Notes

Acknowledgments

This work was partially funded by the National Science Foundation (NSF) through the Florida Coastal Everglades Long-Term Ecological Research program under cooperative Agreement #DBI-06204409 and #DEB-9910514, NSF supplemental funding to RMP and VHRM and analytical support from Dr. Peter Swart at the Stable Isotope laboratory, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami. This is contribution number 648 from the Southeast Environmental Research Center at Florida International University.

References

  1. ArandaCirerol, N., J.A. Herrera-Silveira, and F.A. Comin. 2006. Nutrient water quality in a tropical coastal zone with groundwater discharge, northwest Yucatan, Mexico. Estuarine, Coastal and Shelf Science 68: 445–454.CrossRefGoogle Scholar
  2. Back, W., B.B. Hanshaw, T.E. Pyle, L.N. Plummer, and A.E. Weidie. 1979. Geochemical significance of groundwater discharge and carbonate dissolution to the formation of Caleta Xel Ha, Quintana Roo, Mexico. Water Resources Research 15: 1521–1535.CrossRefGoogle Scholar
  3. Bauer-Gottwein, P., B.R.N. Gondwe, G. Charvet, L.E. Marin, M. Rebolledo-Vieyra, and G. Merediz-Alonso. 2011. Review: The Yucatan Peninsula Karst Aquifer, Mexico. Hydrogeology Journal 19: 507–524.CrossRefGoogle Scholar
  4. Bokuniewicz, H. 1980. Groundwater seepage into Great South Bay, New York. Estuarine, Coastal and Shelf Science 10: 437–444.CrossRefGoogle Scholar
  5. Burnett, W.C. 2003. Groundwater and pore water inputs to the Coastal Zone. Biogeochemistry 66: 3–33.CrossRefGoogle Scholar
  6. Cable, J.E., W.C. Burnett, J.P. Chanton, and G.L. Weatherley. 1996. Estimating groundwater discharge into the Northeastern Gulf of Mexico using radon-222. Earth and Planetary Science Letters 144: 591–604.CrossRefGoogle Scholar
  7. Caccia, V.G., and J.N. Boyer. 2005. Spatial pattering of water quality in Biscayne Bay, Florida as a function of land use and water management. Marine Pollution Bulletin 50: 1416–1429. doi:10.1016/j.marpolbul.2005.08.002.CrossRefGoogle Scholar
  8. Caccia, V.G., and J.N. Boyer. 2007. A nutrient loading budget for Biscayne Bay, Florida. Marine Pollution Bulletin 54: 994–1008. doi:10.1016/j.marpolbul.2007.02.009.CrossRefGoogle Scholar
  9. Corbett, R.D., J. Chanton, W. Burnett, K. Dillon, and C. Rutkowski. 1999. Patterns of groundwater discharge into Florida Bay. American Society of Limnology and Oceanography 44: 1045–1055.CrossRefGoogle Scholar
  10. Enriquez, C., I.J. Marino-Tapia, and J.A. Herrera-Silveira. 2010. Dispersion in the Yucatan Coastal Zone: Implications for red tide events. Continental Shelf Research 30: 127–137.CrossRefGoogle Scholar
  11. Escolero, O.A., L.E. Marin, B. Steinich, and J. Pacheco. 2000. Delimitation of a hydrogeological reserve for a city within a Karstic aquifer: the Merida, Yucatan example. Landscape and Urban Planning 51: 53–62.CrossRefGoogle Scholar
  12. Gonzalez, F.U.T., J.A. Herrera-Silverira, and M.L. Aguirre-Macedo. 2007. Water quality variability and eutrophic trends in Karstic tropical coastal lagoons of the Yucatan Peninsula. Estuarine, Coastal and Shelf Science 76(2): 418–430.CrossRefGoogle Scholar
  13. Herrera-Silveira, J.A. 1993. Ecologia de los productores primaries en la laguna de Celestun, Mexico. Patrones de Variacio n especial y Temporal. Ph.D. Thesis. Unversitat de Barcelona, Spain. 225 pp.Google Scholar
  14. Hussain, N., T.M. Church, and G. Kim. 1999. Use of Rn-222 and Ra-226 to trace groundwater discharge into the Chesapeake Bay. Marine Chemistry 65(1–2): 127–134.CrossRefGoogle Scholar
  15. Isphording, W.C., and E.M. Wilson. 1973. Weathering process and physical subdivisions of northern Yucatan. Proceedings of the Association of American Geographers 5: 117–120.Google Scholar
  16. Kroger, K.D., P.W. Swarzenski, C. Reich, and W.J. Greenwood. 2007. Submarine groundwater discharge to Tampa Bay, nutrient fluxes and biogeochemistry of the coastal aquifer. Marine Chemistry 104: 85–97. doi:10.1016/j.marchem.2006.10.012.CrossRefGoogle Scholar
  17. Li, L., D.A. Barry, F. Stagnitti, and J.Y. Parlange. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research 35(11): 3253–3259.CrossRefGoogle Scholar
  18. Moore, W.S. 1999. The subterranean estuary: A reaction zone of groundwater and seawater. Marine Chemistry 65(1–2): 111–125.CrossRefGoogle Scholar
  19. Moore, W.S., and T.M. Church. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380(612–614): 121–122.Google Scholar
  20. Perry, E., and G. Velazquez-Olimon. 2002. The hydrogeochemisty of the Karst Aquifer System in the Northern Yucatan Peninsula, Mexico. International Geology Review 44(3): 191–221.Google Scholar
  21. Perry, E.J., J. Swift, A. Gambola, R. Reeve, L. Sanborn, A. Marin, and M. Villasuao. 1989. Geologic and environmental aspects of surface cementation, N. Coast, Yucatan, Mexico. Geology Science 251: 1471–1473.Google Scholar
  22. Perry, E., L. Marin, J. McClain, and G. Veazquez. 1995. Ring of Cenotes (Sinkholes) Northwest Yucatan Mexico: It’s hydrogeologic characteristics and possible association with the Chicxulub Impact Crater. Geology 23: 17–20.CrossRefGoogle Scholar
  23. Perry, E., A. Paytan, B. Pedersen, and G. Velazquez-Oliman. 2009. Groundwater geochemistry of the Yucatan Peninsula, Mexico: Constraints on stratigraphy and hydrogeology. Journal of Hydrology 367: 27–40.CrossRefGoogle Scholar
  24. Pope, K.O., A.C. Ocampo, and C.E. Duller. 1993. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico. Earth, Moon, and Planets 63: 93–104.CrossRefGoogle Scholar
  25. Price, R.M.P.K., P.K. Swart, and J.W. Fourqurean. 2006. Coastal groundwater discharge—an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569(1): 23–36.CrossRefGoogle Scholar
  26. Rutkowski, C.M., W.C. Burnett, R.L. Iverson, and J.P. Chanton. 1999. The effect of groundwater seepage on nutrient delivery and seagrass distribution in the northeastern Gulf of Mexico. Estuaries 22(4): 1033–1040.CrossRefGoogle Scholar
  27. Shinn, E.A., C.D. Reich, and T.D. Hickey. 2002. Seepage meters and Bernoulli’s revenge. Estuaries 25: 126–132.CrossRefGoogle Scholar
  28. Slomp, C., and P. Van Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact. Journal of Hydrology 295(1–4): 64–86.CrossRefGoogle Scholar
  29. Stalker, J.C., R.M. Price, and P.K. Swart. 2009. Determining spatial and temporal inputs of freshwater, including submarine groundwater discharge, to a subtropical estuary using geochemical tracers, Biscayne Bay, South Florida. Estuaries and Coasts 32: 694–708. doi:10.1007/s12237-009-9155-y.CrossRefGoogle Scholar
  30. Stoessell, R.K., W.C. Ward, B.H. Ford, and J.D. Schuffert. 1989. Water chemistry and CaCO3 dissolution in the saline part of an open-flow mixing zone, coastal Yucatan Peninsula, Mexico. Geological Society of American Bulletin 101: 159–169.CrossRefGoogle Scholar
  31. Stoessell, R.K., Y.H. Moore, and J.G. Coke. 1993. The occurrence and effects of sulfate reduction and sulfide oxidation on coastal limestone dissolution in Yucatan Cenotes. Ground Water 31: 566–575.CrossRefGoogle Scholar
  32. Swarzenski, P.W., C. Reich, K. Kroeger, and M. Baskaran. 2007. Ra and Rn isotopes and natural tracers of submarine groundwater discharge in Tampa Bay, FL. Marine Chemistry 104: 68–94.Google Scholar
  33. Taniguchi, M., W.C., Burnett, J.E., Cable, and J.V. Turner. Investigation of submarine groundwater discharge. Hydrologic Processes 16(11): 2115–2129.Google Scholar
  34. Top, Z., L.E. Brand, R.D. Corbett, W. Burnett, and J. Chanton. 2001. Helium and radon as tracers of groundwater input into Florida Bay. Journal of Coastal Research 17(4): 859–868.Google Scholar
  35. Uchiyama, Y., K. Nadaoka, P. Rolke, K. Adachi, and H. Yagi. 2000. Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach. Water Resources Research 36(6): 1467–1479.CrossRefGoogle Scholar
  36. Ward, W.C., A.E. Weidie, and W. Back. 1985. Geology and hydrogeology of the Yucatan and Quaternary geology of North-eastern Yucatan Peninsula. New Orleans, LA: The New Orleans Geological Society. 159 pp.Google Scholar
  37. Young, M.B., M.E. Gonneea, D.A. Fong, W.S. Moore, J. Herrera-Silveira, and A. Paytan. 2008. Characterizing sources of groundwater to a tropical coastal lagoon in a Karstic area using radium isotopes and water chemistry. Marine Chemistry 109(3–4): 377–394.CrossRefGoogle Scholar
  38. Younger, P.L. 1996. Submarine groundwater discharge. Nature 382: 121–122.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Jeremy C. Stalker
    • 1
  • Rene M. Price
    • 2
  • Victor H. Rivera-Monroy
    • 3
  • Jorge Herrera-Silveira
    • 4
  • Sara Morales
    • 4
  • Jorge A. Benitez
    • 5
  • David Alonzo-Parra
    • 6
  1. 1.Department of Biology and Marine SciencesJacksonville UniversityJacksonvilleUSA
  2. 2.Department of Earth and Environment, and the Southeastern Environmental Research CenterFlorida International UniversityMiamiUSA
  3. 3.Department of Oceanography and Coastal Science, School of the Coast and EnvironmentLouisiana State UniversityBaton RougeUSA
  4. 4.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)MeridaMexico
  5. 5.Instituto de Ecología, Pesquerías y Oceanografía del Golfo de MéxicoUniversidad Autónoma de CampecheColonia BuenavistaMexico
  6. 6.Ducks Unlimited of Mexico Research Station (DUMAC) Southeast Regional OfficeMeridaMexico

Personalised recommendations