Estuaries and Coasts

, Volume 36, Issue 5, pp 1054–1072 | Cite as

Spatial and Temporal Variability of the CO2 Fluxes in a Tropical, Highly Urbanized Estuary

  • Carlos E. D. Noriega
  • Moacyr Araujo
  • Nathalie Lefèvre


The spatial and temporal variations of the flux of CO2 were determined during 2007 in the Recife estuarine system (RES), a tropical estuary that receives anthropogenic loads from one of the most populated and industrialized areas of the Brazilian coast. The RES acts as a source of nutrients (N and P) for coastal waters. The calculated CO2 fluxes indicate that the upstream inputs of CO2 from the rivers are largely responsible for the net annual CO2 emission to the atmosphere of +30 to +48 mmol m−2 day−1, depending on the CO2 exchange calculation used, which mainly occurs during the late austral winter and early summer. The observed inverse relationship between the CO2 flux and the net ecosystem production (NEP) indicates the high heterotrophy of the system (except for the months of November and December). The NEP varies between −33 mmol m−2 day−1 in summer and −246 mmol m−2 day−1 in winter. The pCO2 values were permanently high during the study period (average ~4,700 μatm) showing a gradient between the inner (12,900 μatm) and lower (389 μatm) sections on a path of approximately 30 km. This reflects a state of permanent pollution in the basin due to the upstream loading of untreated domestic effluents (N/P = 1,367:6 μmol kg−1 and pH = 6.9 in the inner section), resulting in the continuous mineralization of organic material by heterotrophic organisms and thereby increasing the dissolved CO2 in estuarine waters.


Ecosystem metabolism Carbon dioxide fluxes pCO2 Recife estuary 



We thank the Pernambuco State Environmental Agency (CPRH) and the Brazilian National Institute of Meteorology (INMET-Recife) for providing the field data used here. This work was funded by the BIO-NE project (grant 558143/2009-1) of the Brazilian National Council for Scientific and Technological Development (CNPq). We are very grateful to the editors Alberto Borges and Wayne S. Gardner and four anonymous reviewers for their suggestions and comments that improve this manuscript. Finally, we are very grateful to Lisa Robbins (U.S. Geological Survey) for her help with the CO2calc program.


  1. Abril, G., and A.V. Borges. 2004. Carbon dioxide and methane emissions from estuaries. In Greenhouse gases emissions from natural environments and hydroelectric reservoirs: fluxes and processes, chapter 7, Environmental Science Series, ed. A. Tremblay, L. Varfalvy, C. Roehm, and M. Garneau, 187–207. Berlin: Springer. 730 pages.Google Scholar
  2. Abril, G., and M. Frankignoulle. 2001. Nitrogen–alkalinity interactions in the highly polluted Scheldt basin (Belgium). Water Research 35(3): 844–850. doi: 10.1016/s0043-1354(00)00310-9.CrossRefGoogle Scholar
  3. Abril, G., H. Etcheber, A.V. Borges, and M. Frankignoulle. 2000. Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. Comptes Rendus de l`Academie des Sciences Ser II. Sciences de la Terre et des planètes 330: 762–768. doi: 10.1016/s1251-8050(00)00231-7.Google Scholar
  4. Abril, G., M. Nogueira, H. Etcheber, G. Cabeçadas, E. Lemaire, and M.J. Brogueira. 2002. Behaviour of organic carbon in nine contrasting European estuaries. Estuarine, Coastal and Shelf Science 54: 241–262. doi: 10.1006/ecss.2001.0844.CrossRefGoogle Scholar
  5. Anderson, A.J., and F.T. Mackenzie. 2004. Shallow-water oceans: a source or sink of atmospheric CO2? Frontiers in Ecology and the Environmental 2(7): 348–353. doi: 10.2307/3868359.Google Scholar
  6. APHA. (American Public Health Association). 1998. Standard methods for the examination of water and wastewater, 20th ed. Washington: American Public Health Association.Google Scholar
  7. Boden, T.A., G. Marland, and R.J. Andres. 2011. Global, regional, and national fossil-fuel CO 2 emissions. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. doi: 10.3334/CDIAC/00001_V2011.Google Scholar
  8. Borges, A.V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28: 3–27. doi: 10.1007/BF02732750.CrossRefGoogle Scholar
  9. Borges, A.V., B. Delille, L.S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankignoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnology and Oceanography 49(5): 1630–1641. doi: 10.4319/lo.2004.49.5.1630.CrossRefGoogle Scholar
  10. Borges, A.V., B. Delille, and M. Frankignoulle. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophysical Research Letters 32, L14601. doi: 10.1029/2005GL023053.CrossRefGoogle Scholar
  11. Borges, A.V., L.S. Schiettecatte, G. Abril, B. Delille, and F. Gazeau. 2006. Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 70: 375–387. doi: 10.1016/j.ecss.2006.05.046.CrossRefGoogle Scholar
  12. Borges, A.B., K. Ruddick, L.S. Schiettecatte, and B. Delille. 2008. Net ecosystem production and carbon dioxide fluxes in the Scheldt estuarine plume. BMC Ecology 8(15): 1–10. doi: 10.1186/1472-6785-8-15.Google Scholar
  13. Bouillon, S., F. Dehairs, L.S. Schiettecatte, and A.V. Borges. 2007. Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnology and Oceanography 52(1): 46–59. doi: 10.1029/2006JG000325.CrossRefGoogle Scholar
  14. Brasse, S., M. Nellen, R. Seifert, and W. Michaelis. 2002. The carbon dioxide system in the Elbe estuary. Biogeochemistry 59: 25–40. doi: 10.1023/A:1015591717351.CrossRefGoogle Scholar
  15. Brewer, P. G. and J. C. Goldman. 1976. Alkalinity changes generated by phytoplankton growth. Limnology and Oceanography 21(1):108–117. (
  16. Brzezinski, M.A. 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21: 347–357. doi: 10.1111/j.0022-3646.1985.00347.x.CrossRefGoogle Scholar
  17. Cai, W.J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145. doi: 10.1146/annurev-marine-120709-142723.CrossRefGoogle Scholar
  18. Cai, W.J., and Y. Wang. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha rivers, Georgia. Limnology and Oceanography 43(4): 657–668. doi: 10.4319/lo.1998.43.4.0657.CrossRefGoogle Scholar
  19. Cai, W.J., M. Dai, Y. Wang, W. Zhai, T. Huang, S. Chen, F. Zhang, Z. Chen, and Z. Wang. 2004. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research 24: 1301–1319. doi: 10.1016/j.csr.2004.04.005.CrossRefGoogle Scholar
  20. Chen, C.T., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research II 56: 578–590. doi: 10.1016/j.dsr2.2009.01.001.CrossRefGoogle Scholar
  21. Chen, C.T.A., K.K. Liu, and R. Macdonald. 2003. Continental margin exchanges. In Ocean biogeochemistry: a synthesis of the Joint Global Ocean Flux Study (JGOFS), ed. M.J.R. Fasham, 51–56. Berlin: Springer-Verlag.Google Scholar
  22. Cole, B., and J. Cloern. 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36: 299–305. doi: 10.3354/meps036299.CrossRefGoogle Scholar
  23. Colijn, F. 1982. Light absorption in the waters of the Ems-Dollard estuary and its consequences for the growth of phytoplankton and microphytobenthos. Netherlands Journal Sea Research 15: 196–216. doi: 10.1016/0077-7579(82)90004-7.CrossRefGoogle Scholar
  24. CONAMA - National Council of the environment (Conselho Nacional do Meio Ambiente). 2005. Determination CONAMA Nº357, 17 March of 2005, available in: (
  25. CPRH - Pernambuco State Environmental Agency (Agencia estadual de meio ambiente e recursos hídricos). 2007. Relatório de monitoramento de bacias hidrográficas do estado de Pernambuco 2007, Recife, available in: (
  26. Deborde, J., P. Anschutz, G. Chaillou, H. Etcheber, M.V. Commarieu, P. Lecroart, and G. Abril. 2007. The dynamics of phosphorus in turbid estuarine systems: example of the Gironde estuary (France). Limnology and Oceanography 52(2): 862–872. doi: 10.4319/lo.2007.52.2.0862.CrossRefGoogle Scholar
  27. Dickson, A.G. 1990a. Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics 22: 113–127. doi: 10.1016/0021-9614(90)90074-Z.CrossRefGoogle Scholar
  28. Dickson, A.G. 1990b. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A, Oceanographic Research Papers 37(5): 755–766. doi: 10.1016/0198-0149(90)90004-F.CrossRefGoogle Scholar
  29. Druffel, E.R.M., J. Bauer, and S. Griffin. 2005. Input of particulate organic and dissolved carbon from the Amazon to the Atlantic Ocean. Geochemistry, Geophysics, Geosystems 6, Q03009. doi: 10.1029/2004GC000842.CrossRefGoogle Scholar
  30. Duarte, C., and Y. Prairie. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8: 862–870. doi: 10.1007/s10021-005-0177-4.CrossRefGoogle Scholar
  31. Frankignoulle, M., I. Bourge, & R. Wollast. 1996. Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt). Limnology and Oceanography 41(2):365–369, available in: (
  32. Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, and J.M. Théate. 1998. Carbon dioxide emission from European estuaries. Science 282(5388): 434–436. doi: 10.1126/science.282.5388.434.CrossRefGoogle Scholar
  33. Garcia, F.H., and I.I. Gordon. 1992. Oxygen solubility in seawater: better fitting equations. Limnology and Oceanography 37: 1307–1312. doi: 10.4319/lo.1992.37.6.1307.CrossRefGoogle Scholar
  34. Gattuso, J.P., M. Frankignoulle, and R. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology, Evolution, and Systematics 29: 405–433. doi: 10.1146/annurev.ecolsys.29.1.405.CrossRefGoogle Scholar
  35. Gazeau, F., J.P. Gattuso, J.J. Middelburg, N. Brion, L.S. Schiettecatte, M. Frankignoulle, and A.V. Borges. 2005a. Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries 26(6): 868–883. doi: 10.1007/bf02696016.CrossRefGoogle Scholar
  36. Gazeau, F., A.V. Borges, J. Middelburg, B. Delille, M. Pizay, M. Frankignoulle, and J.P. Gattuso. 2005b. Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods. Marine Ecology Progress Series 301: 23–41. doi: 10.3354/meps301023.CrossRefGoogle Scholar
  37. Goldman, J. C. and P. G. Brewer. 1980. Effect of Nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnology and Oceanography 25(2): 352–357. (
  38. Gordon, D. C. Jr., P. R. Boudreau, K. H. Mann, J. E. Ong, W. L. Silvert, S. V. Smith, G. Wattayakorn, F. Wulff, and T. Yanagi. 1996. LOICZ biogeochemical modelling guidelines. LOICZ Reports & Studies No. 5. 2nd Edition. Texel, The Netherlands: LOICZ IPO, vi + 96 pp, available in: (
  39. Goyet, C., R. Adams, and G. Eisched. 1998. Observations of the CO2 system properties in the tropical Atlantic Ocean. Marine Chemistry 60(1–2): 49–61. doi: 10.1016/S0304-4203(97)00081-9.CrossRefGoogle Scholar
  40. Grasshoff, K., M. Ehrhardt, and K. Kremling. 1983. Methods of seawater analysis, 419. Florida: Verlag Chemie.Google Scholar
  41. Guo, X., W.J. Cai, W. Cai, M. Daí, Y. Wang, and B. Chen. 2008. Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary. Continental Shelf Research 28: 1424–1434. doi: 10.1016/j.csr.2007.07.011.CrossRefGoogle Scholar
  42. Gupta, G.V.M., S.D. Thottathil, K.K. Balachandran, N.V. Madhu, P. Madeswaran, and S. Nair. 2009. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): influence of anthropogenic effect. Ecosystems 12: 1145–1157. doi: 10.1007/s10021-009-9280-2.CrossRefGoogle Scholar
  43. Hunt, C., J. Salisbury, D. Vandermark, and W. McGillis. 2011. Contrasting carbon dioxide inputs and exchange in three adjacent New England estuaries. Estuaries and Coasts 34(1): 68–77. doi: 10.1007/s12237-010-9299-9.CrossRefGoogle Scholar
  44. IBGE - Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). 2007. Population census 2000, available in: (
  45. Jiang, L.Q., W.J. Cai, and Y. Wang. 2008. A comparative study of carbon dioxide degassing in river and marine dominated estuaries. Limnology and Oceanography 53(6): 2603–2615. doi: 10.4319/lo.2008.53.6.2603.CrossRefGoogle Scholar
  46. Kempe, S. 1984. Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. Journal of Geophysical Research 89: 4657–4676. doi: 10.1029/JD089iD03p04657.CrossRefGoogle Scholar
  47. Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy, and T.H. Peng. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18(4), GB4031. doi: 10.1029/2004GB002247.CrossRefGoogle Scholar
  48. Knoppers, B., W. Ekau, and A.G. Figueiredo. 1999. The coast and shelf of east northeast Brazil and material transport. Geo-Marine Letters 19: 171–178. doi: 10.1007/s003670050106.CrossRefGoogle Scholar
  49. Laruelle, G.G., H.H. Dürr, C.P. Slomp, and A.V. Borges. 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters 37: 1–6. doi: 10.1029/2010GL043691.CrossRefGoogle Scholar
  50. Lee, K., L.T. Tong, F.J. Millero, C.L. Sabine, A.G. Dickson, C. Goyet, G.H. Park, R. Wanninkhof, R.A. Feely, and R.M. Key. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. Geophysical Research Letters 33(19), L19605. doi: 10.1029/2006GL027207.CrossRefGoogle Scholar
  51. McLusky, D.S. 1993. Marine and estuarine gradients—an overview. Netherlands Journal of Aquatic Ecology 27: 489–493. doi: 10.1007/bf02334809.CrossRefGoogle Scholar
  52. Millero, F.J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research 61: 139–142. doi: 10.1071/MF09254.CrossRefGoogle Scholar
  53. Millero, F.J., K. Lee, and M. Roche. 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry 60(1–2): 111–130. doi: 10.1016/S0304-4203(97)00084-4.CrossRefGoogle Scholar
  54. Nascimento, F. C. R. 2001. Aspectos ecológicos da comunidade fitoplanctônica da Bacia do Pina associados com alguns parâmetros abióticos (climatológicos e hidrológicos). PhD Thesis. Federal University of Pernambuco. 115 p.Google Scholar
  55. Noriega, C. D. 2010. Estado trófico e balanço biogeoquímico dos nutrientes não conservativos (N e P), na Região Metropolitana do Recife -Brasil. PhD Thesis. Federal University of Pernambuco.101 p., available in: (
  56. Noriega, C.D., and M. Araujo. 2011. Nutrient budgets (C, N and P) and trophic dynamics of a Brazilian tropical estuary: Barra das Jangadas. Academia Brasileira de Ciências 83(2): 441–456. doi: 10.1590/S0001-37652011000200007.CrossRefGoogle Scholar
  57. Noriega, C. D. and M. Araujo. 2009. Nitrogen and phosphorus loading in coastal watersheds in northeastern Brazil. Journal of Coastal Research 56:871–875, available in: ( Scholar
  58. Parsons, T.R., and J.D.H. Strickland. 1963. Discussion of spectrophotometric determination of marine plankton pigments, with revised equations of ascertaining chlorophyll a and carotenoids. Journal of Marine Research 21(3): 155–163.Google Scholar
  59. Poole, H.H., and W.R.G. Atkins. 1929. Photo-electric measurements of submarine illumination throughout the year. Journal of the Marine Biological Association of the United Kingdom 16: 234–297.CrossRefGoogle Scholar
  60. Ralison, O.H., A.V. Borges, F. Dehairs, J.J. Middelburg, and S. Bouillon. 2008. Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar). Organic Geochemistry 39: 1649–1658. doi: 10.1016/j.orggeochem.2008.01.010.CrossRefGoogle Scholar
  61. Raymond, P.A., and J.J. Cole. 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24(2): 312–317. doi: 10.2307/1352954.CrossRefGoogle Scholar
  62. Raymond, P.A., N.F. Caraco, and J. Cole. 1997. Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20: 381–390. doi: 10.2307/1352351.CrossRefGoogle Scholar
  63. Raymond, P.A., J.E. Bauer, and J.J. Cole. 2000. Atmospheric CO2 evasion dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography 45(8): 1707–1717. doi: 10.4319/lo.2000.45.8.1707.CrossRefGoogle Scholar
  64. Robbins, L. L., M. E. Hansen, J. A. Kleypas, and S. C. Meylan. 2010. CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): U.S. Geological Survey Open-File Report 2010–1280, 17 pp.Google Scholar
  65. Santiago, M.F., M.G.G. Silva-Cunha, S. Neumann-Leitão, K.M.P. Costa, G.C.B. Palmeira, F.F. Porto Neto, and F.S. Nunes. 2010. Phytoplankton dynamics in a highly eutrophic estuary in tropical Brazil. Brazilian Journal of Oceanography 58(3): 189–205. doi: 10.1590/s1679-87592010000300002.CrossRefGoogle Scholar
  66. Sarma, V.V.S.S., M.D. Kumar, and M. Manerikar. 2001. Emission of carbon dioxide from a tropical estuarine system, Goa, India. Geophysical Research Letters 28(7): 1239–1242. doi: 10.1029/2000GL006114.CrossRefGoogle Scholar
  67. Sarma, V.V.S.S., S.N.M. Gupta, P.V.R. Babu, T. Acharya, N. Harikrishnachari, K. Vishnuvardham, N.S. Rao, N.P.C. Reddy, V.V. Sarma, Y. Sadhuram, T.V.R. Murty, and M.D. Kumar. 2009. Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuarine, Coastal and Shelf Science 85: 515–524. doi: 10.1016/j.ecss.2009.09.003.CrossRefGoogle Scholar
  68. Sarma, V.V.S.S., N.A. Kumar, V.R. Prasad, V. Venkataranama, S. Appalanaidu, B. Sridevi, B.S.K. Kumar, M.D. Bharati, C.V. Subbaiah, T. Acharyya, G.D. Rao, R. Viswanaradham, L. Gawade, D.T. Manjary, P.P. Kumar, K. Rajeev, N.P.C. Reddy, V.V. Sarma, M.D. Kumar, Y. Sadhuram, and T.V.R. Murty. 2011. High CO2 emissions from the tropical Godavari estuary (Indian) associated with monsoon river discharges. Geophysical Research Letters 38, L08601. doi: 10.1029/2011GL046928.CrossRefGoogle Scholar
  69. Sarma, V.V.S.S., K. Vishnuvardham, G.D. Rao, V.R. Prasad, B.S.K. Kumar, S.A. Naidu, N.A. Kumar, D.B. Rao, T. Sridevi, M.S. Krishna, N.P. Reddy, Y. Sadhuram, and R. Murty. 2012. Carbon dioxide emissions from Indian monsoonal estuaries. Geophysical Research Letters 39, L03602. doi: 10.1029/2011GL050709.CrossRefGoogle Scholar
  70. Silva, L.F. 1996. Solos tropicais: Aspectos pedológicos, ecológicos e de manejo, 137. São Paulo: Terra Brasilis Editora.Google Scholar
  71. Souza, M.F.L., V.R. Gomes, S.S. Freitas, R.C.B. Andrade, and B.A. Knoppers. 2009. Net ecosystem metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary, Piauí River (NE of Brazil). Estuaries and Coasts 32: 111–122. doi: 10.1007/s12237-008-9104-1.CrossRefGoogle Scholar
  72. Thottathil, S., K.K. Balachandran, G.V.M. Gupta, N.V. Madhu, and S. Nair. 2008. Influence of allochthonous input on autotrophic–heterotrophic switch-over in shallow waters of a tropical estuary (Cochin Estuary), India. Estuarine, Coastal and Shelf Science 78: 551–562. doi: 10.1016/j.ecss.2008.01.018.CrossRefGoogle Scholar
  73. Vollenweider, R.A. 1974. A manual on methods of measuring primary production of aquatic environments. London: Blackwell. 242pp.Google Scholar
  74. Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2: 203–215. doi: 10.1016/0304-4203(74)90015-2.CrossRefGoogle Scholar
  75. Weiss, R.F., and B.A. Price. 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry 8: 347–359. doi: 10.1016/0304-4203(80)90024-9.CrossRefGoogle Scholar
  76. Wetzel, R.G., and G.E. Likens. 1991. Limnological analyses, 2nd ed, 391. New York: Springer.CrossRefGoogle Scholar
  77. Wollast, R. 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In The global coastal ocean, ed. K.H. Brink and A.R. Robinson, 213–252. New Jersey: Wiley.Google Scholar
  78. Zeebe, R. E., D. Wolf-Gladrow. 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, 346 pp.Google Scholar
  79. Zhai, W., M. Dai, W.J. Cai, Y. Wang, and Z. Wang. 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry 93: 21–32. doi: 10.1016/j.marchem.2004.07.003.CrossRefGoogle Scholar
  80. Zhai, W., M. Dai, and X. Guo. 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry 107: 342–356. doi: 10.1016/j.marchem.2007.02.011.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2013

Authors and Affiliations

  • Carlos E. D. Noriega
    • 1
  • Moacyr Araujo
    • 1
  • Nathalie Lefèvre
    • 2
    • 3
  1. 1.Laboratório de Oceanografia Física Estuarina e Costeira, Departamento de Oceanografia—DOCEANUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Laboratoire d´Océanographie et du Climat: Expérimentation et Approches Numériques—LOCEANUniversité Pierre et Marie CurieParis cedex 05France
  3. 3.LaboMarFortalezaBrazil

Personalised recommendations