Estuaries and Coasts

, Volume 36, Issue 1, pp 149–157 | Cite as

Natural Environmental Changes versus Human Impact in a Florida Estuary (Rookery Bay, USA)

  • J. M. Lammers
  • E. E. van SoelenEmail author
  • T. H. Donders
  • F. Wagner-Cremer
  • J. S. Sinninghe Damsté
  • G. J. Reichart


Assessing the impact of climate change and anthropogenic activity on Florida coastal areas requires a thorough understanding of natural climate variability. The available instrumental record, however, is too short and too limited to capture the full range of natural variability. In order to provide additional data on the natural state of the climate system and to evaluate the influence of human impact, we reconstructed climatic and environmental changes of the past 300 years. Pre- (before 1900 ad) and post-human impact conditions were compared in Rookery Bay, a subtropical, southern Florida estuary and its bordering wetland system. Biomarkers from terrestrial and aquatic environments were used to reconstruct temperature, runoff, and aquatic productivity. Pre-anthropogenic conditions before 1750 ad indicate a relatively large contribution of mangrove-derived organic matter, locally decreasing at the end of this period. After 1750 ad follows a relatively stable period in which biomarker concentrations indicate relatively low levels of runoff and aquatic production. Enhanced anthropogenic activities, such as land clearance and hydrological alterations, end this period of stability by altering the hydrological conditions. This leads to a more dynamic system which is more sensitive to disturbances of vegetation and drainage, as evidenced by peak terrestrial biomarker fluxes during the twentieth century. These episodes of enhanced runoff resulted in eutrophication and algal blooms in Rookery Bay. Natural climate phenomena, such as a positive AMO phase and hurricane activity, might have added to ongoing processes during the twentieth century.


Florida Estuary Anthropogenic activity Runoff Biomarkers Hydrology 



This research was funded by a Utrecht University HIPO grant to F. Wagner-Cremer, S.C. Dekker, and G.J. Reichart. Marieke Lammers is funded by a NWO grant, nr. 820.01.017. Thanks to G. Nobbe at Utrecht University and J. Ossebaar at Royal NIOZ for their technical assistance. We are grateful to the Rookery Bay National Estuarine Research Reserve for fieldwork and administrative assistance. We would like to thank two anonymous reviewers for their insightful comments.


  1. Alam, M., T.B. Sansing, E.L. Busby, D.R. Martiniz, and S.M. Ray. 1979. Dinoflagellate sterols I: sterol composition of the dinoflagellates of Gonyaulax species. Steroids 33: 197–203.CrossRefGoogle Scholar
  2. Albrecht, P., and G. Ourisson. 1971. Biogenic substances in sediments and fossils. Angewandte Chemie International Edition in English 10: 209–225.CrossRefGoogle Scholar
  3. Bray, E.E., and E.D. Evans. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22: 2–15.CrossRefGoogle Scholar
  4. Cahoon, D.R., and J.C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S. Mangroves Salt Marshes 1: 173–186.CrossRefGoogle Scholar
  5. Canuel, E.A., K.H. Freeman, and S.G. Wakeham. 1997. Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnology and Oceanography 42: 1570–1583.CrossRefGoogle Scholar
  6. Chandler, R.F., and S.N. Hooper. 1979. Review: Friedelin and associated triterpenoids. Phytochemistry 18: 711–724.CrossRefGoogle Scholar
  7. Cranwell, P.A. 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology 3: 259–265.CrossRefGoogle Scholar
  8. Cremer, H., F. Sangiorgi, F. Wagner-Cremer, V. McGee, A.F. Lotter, and H. Visscher. 2007. Diatoms (Bacillariophyceae) and dinoflagellate cysts (Dinophyceae) from Rookery Bay, Florida, U.S.A. Carribean Journal of Science 43: 23–58.Google Scholar
  9. Dodd, R.S., F. Fromard, Z.A. Rafii, and F. Blasco. 1995. Biodiversity among West African Rhizophora: foliar wax chemistry. Biochemical Systematics and Ecology 23: 859–868.CrossRefGoogle Scholar
  10. Donders, T.H., F. Wagner, and H. Visscher. 2005. Quantification strategies for human-induced and natural hydrological changes in wetland vegetation, southern Florida, USA. Quaternary Research 64: 333–342.CrossRefGoogle Scholar
  11. Donders, T.H., P.M. Gorissen, F. Sangiorgi, H. Cremer, F. Wagner-Cremer, and V. McGee. 2008. Three-hundred-year hydrological changes in a subtropical estuary, Rookery Bay (Florida): human impact versus natural variability. Geochemistry, Geophysics, Geosystems 9: 1–15.Google Scholar
  12. Dragovich, A., and J.A.J. Kelly. 1964. Preliminary observations on phytoplankton and hydrology in Tampa Bay and the immediate adjacent offshore waters. In A collection of data in reference to red tide out-breaks during 1963. Florida Board of Conservation Marine Laboratory (mimeo. report), pp. 4–22.Google Scholar
  13. Eglinton, G., and R.J. Hamilton. 1967. Leaf epicuticular waxes. Science 156: 1322–1334.CrossRefGoogle Scholar
  14. Enfield, D.B., A.M. Mestas-Nuñez, and P.J. Trimble. 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters 28: 2077–2080.CrossRefGoogle Scholar
  15. Gilbes, F., C. Tomas, J.J. Walsh, and F.E. Müller-Karger. 1996. An episodic chlorophyll plume on the West Florida shelf. Continental Shelf Research 16: 1201–1224.CrossRefGoogle Scholar
  16. Gilbes, F., F.E. Müller-Karger, and C.E. Del Castillo. 2002. New evidence for the West Florida Shelf Plume. Continental Shelf Research 22: 2479–2496.CrossRefGoogle Scholar
  17. Gunter, G., R.H. Williams, C.C. Davis, and F.G.W. Smith. 1948. Catastrophic mass mortality of marine animals and coincident phytoplankton blooms on the west coast of Florida, November 1946 to August 1947. Ecological Monographs 183: 311–324.Google Scholar
  18. Hopmans, E.C., J.W.H. Weijers, E. Schefuß, L. Herfort, J.S. Sinninghe Damsté, and S. Schouten. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters 224: 107–116.CrossRefGoogle Scholar
  19. Jaffé, R., A.I. Rushdi, P.M. Medeiros, and B.R.T. Simoneit. 2006. Natural product biomarkers as indicators of sources and transport of sedimentary organic matter in a subtropical river. Chemosphere 64: 1870–1884.CrossRefGoogle Scholar
  20. Johnson, R.W., and J.A. Calder. 1973. Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment. Geochimica et Cosmochimica Acta 37: 1943–1955.CrossRefGoogle Scholar
  21. Kim, J.-H., L. Dupont, H. Behling, and G.J.M. Versteegh. 2005. Impacts of rapid sea-level rise on mangrove deposit erosion: application of taraxerol and Rhizophora records. Journal of Quaternary Science 20: 221–225.CrossRefGoogle Scholar
  22. Light, S.S., and J.W. Dineen. 1994. Water control in the Everglades: A historical perspective. In Everglades: The Ecosystem and Its Restoration, ed. S.M. Davis and J.C. Ogden. Delray Beach, FL: St. Lucie.Google Scholar
  23. Massé, G., S.T. Belt, W.G. Allard, C.A. Lewis, S.G. Wakeham, and S.J. Rowland. 2004. Occurrence of novel monocyclic alkenes from diatoms in marine particulate matter and sediments. Organic Geochemistry 35: 813–822.CrossRefGoogle Scholar
  24. Mestas-Nuñez, A.M., and D.B. Enfield. 2003. Investigation of Intra-seasonal to Multi-decadal Variability in South Florida Rainfall. NOAA Atlantic Oceanographic and Meteorological Laboratory, pp. 83.Google Scholar
  25. Müller, P.J., G. Kirst, G. Ruhland, I. von Storch, and A. Rosell-Melé. 1998. Calibration of the alkenone paleotemperature index \( {\text{U}}_{{37}}^{{{{\text{K}}^{\prime }}}} \) based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62: 1757–1772.CrossRefGoogle Scholar
  26. Nichols, P.D., and R.B. Johns. 1985. Lipids of the tropical seagrass Thallassia hemprichii. Phytochemistry 24: 81–84.CrossRefGoogle Scholar
  27. Ohkouchi, N., K. Kawamura, and A. Taira. 1997. Fluctuations of terrestrial and marine biomarkers in the western tropical Pacific during the last 23.300 years. Paleoceanography 12: 623–630.CrossRefGoogle Scholar
  28. Orem, W.H., C.W. Holmes, C. Kendall, H.E. Lerch, A.L. Bates, S.R. Silva, A. Boylan, M. Corum, M. Marot, and C. Hedgman. 1999. Geochemistry of Florida Bay sediments: Nutrient history at five sites in eastern and central Florida Bay. Journal of Coastal Research 15: 1055–1071.Google Scholar
  29. Pelejero, C., and J.O. Grimalt. 1997. The correlation between the \( {\text{U}}_{{37}}^{{{{\text{K}}^{\prime }}}} \) index and sea surface temperatures in the warm boundary: The South China Sea. Geochimica et Cosmochimica Acta 61: 4789–4797.CrossRefGoogle Scholar
  30. Prahl, F.G., and S.G. Wakeham. 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330: 367–369.CrossRefGoogle Scholar
  31. Rabalais, N.N., R.E. Turner, R.J. Díaz, and D. Justić. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science: Journal du Conseil 66: 1528–1537.Google Scholar
  32. Rafii, Z.A., R.S. Dodd, and F. Fromard. 1996. Biogeographic Variation in foliar waxes of mangrove species. Biochemical Systematics and Ecology 24: 341–345.CrossRefGoogle Scholar
  33. Rontani, J. 2001. Visible light-dependent degradation of lipidic phytoplanktonic components during senescence: a review. Phytochemistry 58: 187–202.CrossRefGoogle Scholar
  34. Shimizu, Y., M. Alam, and A. Kobayashi. 1976. Dinosterol, the major sterol with a unique side chain in the toxic dinoflagellate, Gonyaulax tamarensis. Journal of the American Chemical Society 98: 1059–1060.CrossRefGoogle Scholar
  35. Shirley, M.A., and S.L. Brandt-Williams. 2001. Characterization of the Rookery Bay National Estuarine Research Reserve. NOAA Coastal Serv. Cent., pp: 37.Google Scholar
  36. Sinninghe Damsté, J.S., E.C. Hopmans, A.C.T. van Duin, and J.A.J. Geenevasen. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research 43: 1641–1651.CrossRefGoogle Scholar
  37. Smittenberg, R.H., R.D. Pancost, E.C. Hopmans, M. Paetzel, and J.S. Sinninghe Damsté. 2004. A 400-year record of environmental change in an euxinic fjord as revealed by the sedimentary biomarker record. Palaeogeography, Palaeoclimatology, Palaeoecology 202: 331–351.CrossRefGoogle Scholar
  38. Surge, D.M., and K.C. Lohmann. 2002. Temporal and spatial differences in salinity and water chemistry in SW Florida estuaries: effects of human-impacted watersheds. Estuaries 25: 393–408.CrossRefGoogle Scholar
  39. Van Soelen, E.E., E.I. Lammertsma, H. Cremer, T.H. Donders, F. Sangiorgi, G.R. Brooks, R.A. Larson, J.S. Sinninghe Damsté, F. Wagner-Cremer, and G.J. Reichart. 2010. Late Holocene sea-level rise in Tampa Bay: integrated reconstruction using biomarkers, pollen, organic-walled dinoflagellate cysts, and diatoms. Estuarine, Coastal and Shelf Science 86: 216–224.CrossRefGoogle Scholar
  40. Versteegh, G.J.M., E. Schefuß, L. Dupont, F. Marret, J.S. Sinninghe Damsté, and J.H.F. Jansen. 2004. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochimica et Cosmochimica Acta 68: 411–422.CrossRefGoogle Scholar
  41. Volkman, J.K. 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry 92: 83–99.CrossRefGoogle Scholar
  42. Volkman, J.K., G. Eglinton, E.D.S. Corner, and T.E.V. Forsberg. 1980. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19: 2619–2622.CrossRefGoogle Scholar
  43. Volkman, J.K., S.M. Barrett, G.A. Dunstan, and S.W. Jeffrey. 1992. C30–C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Organic Geochemistry 18: 131–138.CrossRefGoogle Scholar
  44. Volkman, J.K., S.M. Barrett, and G.A. Dunstan. 1994. C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Organic Geochemistry 21: 407–414.CrossRefGoogle Scholar
  45. Volkman, J.K., S.M. Barrerr, S.I. Blackburn, and E.L. Sikes. 1995. Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochimica et Cosmochimica Acta 59: 513–520.CrossRefGoogle Scholar
  46. Volkman, J.K., S.M. Barrett, and S.I. Blackburn. 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols in freshwater environments. Organic Geochemistry 30: 307–318.CrossRefGoogle Scholar
  47. Wardlaw, B.R. 2001. Introduction to paleoecological studies of South Florida and the implications for land management decisions. Bulletins of American Paleontology 361: 5–15.Google Scholar
  48. Weijers, J.W.H., S. Schouten, J.C. van den Donker, E.C. Hopmans, and J.S. Sinninghe Damsté. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta 71: 703–713.CrossRefGoogle Scholar
  49. Withers, N.W., R.C. Tuttle, L.J. Goad, and T.W. Goodwin. 1979. Dinosterol side chain biosynthesis in a marine dinoflagellate, Crypthecodinium cohnii. Phytochemistry 18: 71–73.CrossRefGoogle Scholar
  50. Wright, A.L., Y. Wang, and K.R. Reddy. 2008. Loss–on–ignition method to assess soil organic carbon in calcareous Everglades wetlands. Communications in Soil Science and Plant Analysis 39: 3074–3083.CrossRefGoogle Scholar
  51. Xu, Y., C.W. Holmes, and R. Jaffé. 2007. Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: a biomarker based study. Estuarine, Coastal and Shelf Science 73: 201–210.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2012

Authors and Affiliations

  • J. M. Lammers
    • 1
  • E. E. van Soelen
    • 1
    Email author
  • T. H. Donders
    • 2
  • F. Wagner-Cremer
    • 3
  • J. S. Sinninghe Damsté
    • 1
    • 4
  • G. J. Reichart
    • 1
    • 5
  1. 1.Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.TNO Geological Survey of The NetherlandsUtrechtThe Netherlands
  3. 3.Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtNetherlands
  4. 4.Department of Marine Organic BiogeochemistryNIOZ Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
  5. 5.Biogeology DepartmentAlfred Wegener InstituteBremerhavenGermany

Personalised recommendations