Advertisement

Estuaries and Coasts

, Volume 35, Issue 4, pp 1069–1081 | Cite as

Effects of Artificial Breaching of a Temporarily Open/Closed Estuary on Benthic Macroinvertebrates (Camacho Lagoon, Southern Brazil)

  • Sérgio A. NettoEmail author
  • André Menegotto Domingos
  • Márcia Neunschwander Kurtz
Article

Abstract

The mouth dynamics of temporarily open/closed estuaries (TOCEs) play a key role in their overall functioning. In this study, the effect of the inlet state (closed vs. artificially breached) on spatial variability of macrobenthic invertebrates (composition, abundance, and biomass) was assessed in a temporarily open/closed lagoon of South Brazil (28°35′S/48°52′W). Samplings were carried out in two periods during closed (July and November) and open phases (July and November). Additionally, in order to evaluate possible transitory effects of breaching, data obtained during closed and open phases were compared with those samples taken 60 days after the end of mechanical opening of the mouth (January). The artificial breaching markedly changed the dynamic of the benthic environment. After the inlet dredging and bulldozing, total organic content and microphytobenthic biomass were significantly reduced. The disturbance also resulted in a population crash of the macrobenthic invertebrates, with a reduction of 50% in biomass and 90% in density. Following the shock produced by the artificial breaching, most of the macroinvertebrates descriptors recovered, as shown by the univariate and multivariate analysis. However, a benthic community with a significantly different structure emerged. During the study, the macroinvertebrates from inner portions of the lagoon were less variable than those in the middle or near the lagoon inlet. The results of this study showed that the macrobenthic associations of Camacho lagoon were primarily structured by salinity and microphytobenthic biomass, which in turn, were regulated by the state of the inlet.

Keywords

Temporarily open/closed estuaries Benthic fauna Macroinvertebrates Coastal zone management Coastal lagoon Brazil 

Notes

Acknowledgments

This study was partially supported by FAMASC (Santa Catarina Aquaculture Federation), CPNq (Brazilian National Research Council) and the State of Santa Catarina Government. We are grateful to André Francisco for his help in field work and Alexandre do Farol for the assistance during all phases of the study. We also thank three anonymous reviewers for their suggestions that greatly improved the manuscript.

Supplementary material

12237_2012_9488_MOESM1_ESM.doc (192 kb)
ESM Table 1 Mean densities (inds./0.017m2) of the macrobenthic invertebrate taxa found in Camacho lagoon, S Brazil, at each site and sampling period. (DOC 191 kb)

References

  1. Allanson, B.R., and D. Baird. 1999. Estuaries of South Africa. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Anandraj, A., R. Perissinotto, C. Nozais, and D. Stretch. 2008. The recovery of microalgal production and biomass in a South African temporarily open/closed estuary, following mouth breaching. Estuarine, Coastal and Shelf Science 79: 599–606. doi: 10.1016/j.ecss.2008.05.015.CrossRefGoogle Scholar
  3. Anderson, M.J. 2005. PERMANOVA: a Fortran Computer Program for Permutational Multivariate Analysis of Variance. Auckland: Department of Statistics, University of Auckland.Google Scholar
  4. Bate, G. 2007. Estuary management. In A review of information on temporarily open/closed estuaries in the warm and cool temperate biogeographic regions of South Africa, with particular emphasis on the influence of river flow on these systems, eds. A. Whitfield and G. Bate, 192- 214. Pretoria: Water Research Commission Report No. 1581/1/07.Google Scholar
  5. Bemvenuti, C.E. 1998a. Trophic structure. In Subtropical convergence environments. The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 79–82. Berlin: Springer.Google Scholar
  6. Bemvenuti, C.E. 1998b. Benthic invertebrates. In Subtropical convergence environments. The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 43–46. Berlin: Springer.Google Scholar
  7. Bianchi, T.S., and J.S. Levinton. 1984. The importance of microalgae bacteria and particulate organic matter in the somatic growth of Hydrobia totteni. Journal of Marine Research 42: 431–443. doi: 10.1357/002224084788502747.CrossRefGoogle Scholar
  8. Bland, J.M., and D.G. Altman. 1995. Multiple significance tests: the Bonferroni method. British Medical Journal, Statistics Notes 310: 170.Google Scholar
  9. Bollmohr, S., P.J. van den Brink, P.W. Wade, J.A. Day, and R. Schulz. 2009. Spatial and temporal variability in particle-bound pesticide exposure and their effects on benthic community structure in a temporarily open estuary. Estuarine, Coastal and Shelf Science 82: 50–60. doi: 10.1016/j.ecss.2008.12.008.CrossRefGoogle Scholar
  10. CEPA. 2010. Centro de Socio-economia e Planejamento Agrícola—Epagri/Cepa. http://cepa.epagri.sc.gov.br/Publicacoes/Sintese_2010/sintese%202010_inteira.pdf. Accessed 10 March 2011.
  11. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x.CrossRefGoogle Scholar
  12. Clarke, K.R., and M. Ainsworth. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219. doi: 10.3354/meps092205.CrossRefGoogle Scholar
  13. Clarke, K.R., and R.H. Green. 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46: 213–226.CrossRefGoogle Scholar
  14. Colling, L.A., C.E. Bemvenuti, and M.S. Gandra. 2007. Seasonal variability on the structure of sublittoral macrozoobenthic association in the Patos Lagoon estuary, southern Brazil. Iheringia, Série Zoologia 97(3): 257–262. doi: 10.1590/S0073-47212007000300007.CrossRefGoogle Scholar
  15. Cooper, A., I. Wright, and T. Mason. 1999. Geomorpholy and sedimentology. In Estuaries of South Africa, ed. B.R. Allason and D. Baird, 2–25. Cambridge: Cambridge University Press.Google Scholar
  16. Dean, W.E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentology and Petrology 44: 242–248. doi: 10.1306/74D729D2-2B21-11D7-8648000102C1865D.Google Scholar
  17. DeBlasis, P., A. Kneip, R. Scheel-Ybert, P.C. Giannini, and M.D. Gaspar. 2007. Dinâmica natural e arqueologia regional no litoral sul do Brasil. Arqueologia Sul-Americana 3: 26–61.Google Scholar
  18. Decker, H.P. 1987. Breaching the mouth of the bot river estuary, South Africa: impact on its benthic macrofaunal communities. Transactions of the Royal Society of South Africa 46(3): 231–250.CrossRefGoogle Scholar
  19. Dye, A., and F. Barros. 2005. Spatial patterns in macrofauna assemblages in intermittently open/closed coastal lakes in New South Wales, Australia. Estuarine, Coastal and Shelf Science 62: 357–371. doi: 10.1016/j.ecss.2005.02.029.CrossRefGoogle Scholar
  20. EPAGRI. 2011. Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri). http://ciram.epagri.sc.gov.br/portal/website/. Accessed 20 September 2011.
  21. Fenchel, T. 1975. Factors determining the distribution patterns of mud snails (Hydrobiidae). Oecologia 20: 1–17.CrossRefGoogle Scholar
  22. Fonseca, G., and S.A. Netto. 2006. Shallow sublittoral benthic communities of the Laguna Estuarine System, South Brazil. Brazilian Journal of Oceanography 54: 41–54. doi: 10.1590/S1679-87592006000100004.CrossRefGoogle Scholar
  23. Gama, P. 2007. Microalgae. In A review of information on temporarily open/closed estuaries in the warm and cool temperate biogeographic regions of South Africa, with particular emphasis on the influence of river flow on these systems, eds A. Whitfield and G. Bate, 68- 82. Pretoria: Water Research Commission Report No. 1581/1/07.Google Scholar
  24. Garcia, R., and L. Thomsen. 2008. Bioavailable organic matter in surface sediments of the Nazaré canyon and adjacent slope (Western Iberian Margin). Journal of Marine Systems 74: 44–59. doi: 10.1016/j.jmarsys.2007.11.004.CrossRefGoogle Scholar
  25. Giménez, L., A.I. Borthagaray, M. Rodríguez, A. Brazeiro, and C. Dimitriadis. 2005. Scale-dependent patterns of macrofaunal distribution in soft-sediment intertidal habitats along a large-scale estuarine gradient. Helgoland Marine Research 59: 224–236. doi: 10.1016/j.jmarsys.2007.11.004.CrossRefGoogle Scholar
  26. Gladstone, W., N. Hacking, and V. Owen. 2006. Effects of artificial openings of intermittently opening estuaries on macroinvertebrate assemblages of the entrance barrier. Estuarine, Coastal and Shelf Science 67: 708–720. doi: 10.1016/j.ecss.2006.01.008.CrossRefGoogle Scholar
  27. Gobler, C.J., L.A. Cullison, F. Koch, T.M. Harder, and W.K. Jerey. 2005. Influence of freshwater flow, ocean exchange, and seasonal cycles on phytoplankton and nutrient dynamics in a temporarily open estuary. Estuarine, Coastal and Shelf Science 65: 275–288. doi: 10.1016/j.ecss.2005.05.016.CrossRefGoogle Scholar
  28. Gonçalves, J.E., J.J.I. Fonseca, and M.F.P. Callisto. 1998. Population dynamics of Heleobia australis (Gastropoda) in a coastal lagoon (Rio de Janeiro, Brazil). Verhandlungen der Internationalen Vereinigung fur Limnologie 26: 2056–2057.Google Scholar
  29. Hastie, B.F., and S.D.A. Smith. 2006. Benthic macrofaunal communities in intermittent estuaries during a drought: comparisons with permanently open estuaries. Journal of Experimental Marine Biology and Ecology 330: 356–367. doi: 10.1016/j.jembe.2005.12.039.CrossRefGoogle Scholar
  30. Henninger, T.O., P.W. Froneman, and A.N. Hodgson. 2008. The population dynamics of the estuarine isopod Exosphaeroma hylocoetes (Barnard, 1940) within three temporarily open/closed southern African estuaries. African Zoology 43(2): 202–217. doi: 10.3377/1562-7020-43.2.202.CrossRefGoogle Scholar
  31. Hirst, A.J. 2004. Broad-scale environmental gradients among estuarine benthic macrofaunal assemblages of south-eastern Australia: implications for monitoring estuaries. Marine and Freshwater Research 55: 79–92. doi: 10.1071/MF03011.CrossRefGoogle Scholar
  32. Hume, T.M., T. Snlder, M. Weatherhead, and R. Liefting. 2007. A controlling factor approach to estuary classification. Ocean & Coastal Management 50: 905–929. doi: 10.1016/j.ocecoaman.2007.05.009.CrossRefGoogle Scholar
  33. INPH. 1991. Parecer técnico quanto aos aspectos hidráulicos-sedimentológicos relativos à obra de fixação da barra do Camacho. Rio de Janeiro: Instituto Nacional de Pesquisas Hidroviárias.Google Scholar
  34. Kjerfve, B. 1994. Coastal lagoons. In Coastal lagoon processes, ed. B. Kjerfve, 1–8. Amsterdam: Elsevier.CrossRefGoogle Scholar
  35. Lawrie, R.A., D.D. Stretch, and R. Perissinotto. 2010. The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary. Estuarine, Coastal and Shelf Science 87: 237–245. doi: 10.1016/j.ecss.2010.01.020.CrossRefGoogle Scholar
  36. López-Figueroa, F., and F.X. Niell. 1988. Feeding behaviour of Hydrobia ulvae (Pennant) in microcosms. Journal of Experimental Marine Biology and Ecology 114: 153–167. doi: 10.1016/0022-0981(88)90135-9.CrossRefGoogle Scholar
  37. Lorenzen, C.J. 1967. Determination of clorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  38. Meurer, A.Z., and S.A. Netto. 2007. Seasonal dynamics of benthic communities in a shallow sublitoral site of Laguna Estuarine System (South, Brazil). Brazilian Journal of Aquatic Science and Technology 11(2): 53–62.Google Scholar
  39. Morant, P., and N. Quinn. 1999. Influence of man and management of South African estuaries. In Estuaries of South Africa, ed. B.R. Allanson and D. Baird, 289–321. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Netto, S.A., and T.J. Pereira. 2009. Benthic community response to an estuarine passive fishing gear in a coastal lagoon (South Brazil). Aquatic Ecology 43: 521–538. doi: 10.1007/s10452-008-9177-8.CrossRefGoogle Scholar
  41. Niekerk, L., J.H. van der Merwe, and P. Huizinga. 2005. The hydrodynamics of the Bot River Estuary revisited. Water SA 31(1): 73–85.Google Scholar
  42. Oliveira, D.B., J.L.B. Carvalho, and A.F. Klein. 2004. The stability of the Camacho Inlet, Santa Catarina, Brazil. Journal of Coastal Research, Special Issue 39: 561–564.Google Scholar
  43. Perissinotto, R., K. Iyer, and C. Nozais. 2006. Response of microphytobenthos to flow and trophic variation in two South African temporarily open/closed estuaries. Botanica Marina 49: 10–22. doi: 10.1515/BOT.2006.002.CrossRefGoogle Scholar
  44. Perneger, T.V. 1998. What's wrong with Bonferroni adjustments. British Medical Journal 316: 1236–1238.CrossRefGoogle Scholar
  45. Ponder, W.F., D.J. Colgan, and G.A. Clark. 1991. The morphology, taxonomy and genetic-structure of Tatea (Mollusca, Gastropoda, Hydrobiidae), estuarine snails from temperate Australia. Australian Journal of Zoology 39(4): 447–497.CrossRefGoogle Scholar
  46. Quinn, G.P., and M.J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.Google Scholar
  47. Riaux-Gobin, C., and P. Bourgoin. 2004. Microphytic standing stocks at Kerguelen Islands (Subantarctic, Indian Ocean), annual variations in relation to environmental factors: II, intertidal and subtidal microphytobenthos. Polar Biology 27: 735–747. doi: 10.1007/s00300-004-0658-5.CrossRefGoogle Scholar
  48. Roy, P.S., R.J. Williams, A.R. Jones, I. Yassini, P.J. Gibbs, B. Coastes, R.J. West, P.R. Scanes, J.P. Hudson, and S. Nicol. 2001. Structure and function of south-east Australian estuaries. Estuarine, Coastal and Shelf Science 53: 351–384. doi: 10.1006/ecss.2001.0796.CrossRefGoogle Scholar
  49. Santos, A.M., A.M. Amado, M. Minello, V.F. Farjalla, and F.A. Esteves. 2006. Effects of the sand bar breaching on Typha domingensis (PERS.) in a tropical coastal lagoon. Hydrobiologia 556(1): 61–68. doi: 10.1007/s10750-005-1084-6.CrossRefGoogle Scholar
  50. Schallenberg, M., S.T. Larned, S. Hayward, and C. Arbuckle. 2010. Contrasting effects of managed opening regimes on water quality in two intermittently closed and open coastal lakes. Estuarine, Coastal and Shelf Science 86: 587–597. doi: 10.1016/j.ecss.2009.11.001.CrossRefGoogle Scholar
  51. Stretch, D., and M. Parkison. 2006. The breaching of sand barriers at perched, temporary open/closed estuaries—a model study. Coastal Engineering Journal 48(1): 13–30. doi: 10.1142/S0578563406001295.CrossRefGoogle Scholar
  52. Strickland, J.H.D., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada.Google Scholar
  53. Suguio, K. 1973. Introdução à sedimentologia. São Paulo: Blücher/EDUSP.Google Scholar
  54. Teske, P.R., and T.H. Wooldridge. 2001. A comparison of the macrobenthic faunas of permanently open and temporarily open/closed South African estuaries. Hydrobiologia 464: 227–243. doi: 10.1023/A:1013995302300.CrossRefGoogle Scholar
  55. Teske, P.R., and T.H. Wooldridge. 2003. What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs. sediment particle size. Estuarine, Coastal and Shelf Science 57: 225–238. doi: 10.1016/S0272-7714(02)00347-5.CrossRefGoogle Scholar
  56. Twomey, L., and P. Thompson. 2001. Nutrient limitation of phytoplankton in a seasonally open Bar-Built Estuary: Wilson Inlet, Western Australian. Journal of Phycology 37: 16–29. doi: 10.1046/j.1529-8817.1999.014012016.x.CrossRefGoogle Scholar
  57. Vieira, S.H., R. Coelho, J. Nolasco, R.B. Serôdio, and H. Queiroga. 2010. The circatidal rhythm of the estuarine gastropod Hydrobia ulvae (Gastropoda: Hydrobiidae). Biological Journal of the Linnean Society 100(2): 439–450.CrossRefGoogle Scholar
  58. Warwick, R.M., and K.R. Clarke. 1993. Increased variability as a symptom of stress in marine communities. Journal of Experimental Marine Biology and Ecology 172: 215–226. doi: 10.1016/0022-0981(93)90098-9.CrossRefGoogle Scholar
  59. Wetzel, M.A., H. Leuchs, and J.H.E. Koop. 2005. Preservation effects on wet weight, dry weight and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgoland Marine Research 59: 206–213.CrossRefGoogle Scholar
  60. Whitfield, A.K. 1992. A characterization of southern African estuarine systems. Southern African Journal of Aquatic Sciences 12: 89–103. doi: 10.1080/10183469.1992.9631327.CrossRefGoogle Scholar
  61. Whitfield, A., and G. Bate. 2007. A Review of Information on Temporarily Open/Closed Estuaries in the Warm and Cool Temperate Biogeographic Regions of South Africa, with Particular Emphasis on the Influence of River Flow on These Systems. Pretoria: Water Research Commission Report No. 1581/1/07.Google Scholar
  62. Wooldridge, T. 1999. Estuarine zooplankton community structure and dynamics. In Estuaries of South Africa, ed. B.R. Allanson and D. Baird, 141–166. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2012

Authors and Affiliations

  • Sérgio A. Netto
    • 1
    Email author
  • André Menegotto Domingos
    • 1
  • Márcia Neunschwander Kurtz
    • 1
  1. 1.Laboratório de Ciências MarinhasUniversidade do Sul de Santa Catarina, UNISULTubarãoBrazil

Personalised recommendations