Estuaries and Coasts

, Volume 35, Issue 3, pp 743–753

Connectivity Among Salt Marsh Subhabitats: Residency and Movements of the Mummichog (Fundulus heteroclitus)

  • Kenneth W. Able
  • Deborah N. Vivian
  • Gina Petruzzelli
  • Stacy M. Hagan


We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus heteroclitus). We captured, tagged (n = 14,040 individuals, 30–110 mm), and recaptured from Feb 2001 to Jul 2002, although most recaptures (75–95% by tagging location) occurred within 150 days. Seasonal residency and movements were common among most subhabitats based on catch per unit effort and recapture per unit effort. Thus, these (marsh pools, intertidal and subtidal creeks, and marsh surface) should be considered natural subhabitats within New England type salt marshes. Further, all these subhabitat types should be included in studies of salt marsh nekton and marsh restoration and creation activities.


Salt marsh Mummichog Residency Movements Seascape Subhabitats 


  1. Able, K.W., and M.P. Fahay. 1998. The first year in the life of estuarine fishes in the Middle Atlantic Bight. New Brunswick: Rutgers University Press.Google Scholar
  2. Able, K.W., D.A. Witting, R.S. McBride, R.A. Rountree, and K.J. Smith. 1996. Fishes of polyhaline estuarine shores in Great Bay-Little Egg Harbor, New Jersey: A case study of seasonal and habitat influences. In Estuarine shores: Evolution. Environments and human alterations, ed. K.F. Nordstrom and C.T. Roman, 335–353. Chichester: Wiley.Google Scholar
  3. Able, K.W., M.P. Fahay, K.L. Heck Jr., C.T. Roman, M.A. Lazzari, and S.C. Kaiser. 2002. Seasonal distribution and abundance of fishes and decapod crustaceans in a Cape Cod estuary. Northeastern Naturalist 9(3): 285–302.Google Scholar
  4. Able, K.W., L.S. Hales Jr., and S.M. Hagan. 2005. Movement and growth of juvenile (age 0 and 1+) of tautog (Tautoga onitis) and cunner (Tautogolabrus adspersus) in a southern New Jersey estuary. Journal of Experimental Marine Biology and Ecology 327(1): 22–35.CrossRefGoogle Scholar
  5. Able, K.W., S.M. Hagan, and S.A. Brown. 2006. Habitat use, movement, and growth of young of-the-year Fundulus spp. in southern New Jersey salt marshes: Comparisons based on tag/recapture. Journal of Experimental Marine Biology and Ecology 335: 177–187.CrossRefGoogle Scholar
  6. Able, K.W., J.H. Balletto, S.M. Hagan, P.R. Jivoff, and K. Strait. 2007. Linkages between salt marshes and other nekton habitats in Delaware Bay, USA. Reviews in Fisheries Science 15: 1–61.CrossRefGoogle Scholar
  7. Able, K.W., J. Dobarro, and A. Muzeni-Corino. 2010. An evaluation of boat basin dredging effects: Response of fishes and crabs in a New Jersey estuary. North American Journal of Fisheries Management 30: 1001–1015.CrossRefGoogle Scholar
  8. Adamowicz, S.C., and C.T. Roman. 2005. New England salt marsh pools: A quantitative analysis of geomorphic and geographic features. Wetlands 25(2): 279–288.CrossRefGoogle Scholar
  9. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81(2): 169–193.CrossRefGoogle Scholar
  10. Belanger, G., and M.A. Rodriguez. 2002. Local movement as a measure of habitat quality in stream salmonids. Environmental Biology of Fishes 64: 155–164.CrossRefGoogle Scholar
  11. Collette, B.B., and G. Klein-MacPhee (eds.). 2002. Bigelow and Schroeder’s Fishes of the Gulf of Maine. Washington: Smithsonian Institution Press.Google Scholar
  12. Dahl, T.E. 1990. Wetlands losses in the United States, 1780s to 1980s. Washington: United State Department of the Interior, Fish and Wildlife Service.Google Scholar
  13. Dolinsek, I.J., J.W.A. Grant, and P.M. Biron. 2007. The effect of habitat heterogeneity on the population density of juvenile Atlantic salmon Salmo salar L. Journal of Fish Biology 70: 206–214.CrossRefGoogle Scholar
  14. Fritz, E.S., W.H. Meredith, and V.A. Lotrich. 1975. Fall and winter movements and activity level of the mummichog, Fundulus heteroclitus, in a tidal creek. Chesapeake Science 16: 211–215.CrossRefGoogle Scholar
  15. Haas, H.L., C.J. Freeman, J.M. Logan, L. Deegan, and E.F. Gaines. 2009. Examining mummichog growth and movement: Are some individuals making intra-season migrations to optimize growth? Journal of Experimental Marine Biology and Ecology 369: 8–16.CrossRefGoogle Scholar
  16. Hagan, S.M., S.A. Brown, and K.W. Able. 2007. Production of mummichog Fundulus heteroclitus: Response in marshes treated for common reed Phragmites australis removal. Wetlands 27(1): 54–67.CrossRefGoogle Scholar
  17. Halpin, P.M. 1997. Habitat use patterns of the mummichog, Fundulus heteroclitus, in New England. Estuaries 20(3): 618–625.CrossRefGoogle Scholar
  18. Halpin, P.M. 2000. Habitat use by an intertidal salt-marsh fish: Trade-offs between predation and growth. Marine Ecology Progress Series 198: 203–214.CrossRefGoogle Scholar
  19. Hettler, W.F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA. Marine Ecology Progress Series 56: 111–118.CrossRefGoogle Scholar
  20. Hunter, K.L., M.G. Fox, and K.W. Able. 2007. Habitat influences on reproductive allocation and growth of the mummichog (Fundulus heteroclitus) in a coastal salt marsh. Marine Biology 151: 617–627.CrossRefGoogle Scholar
  21. Hunter, K.L., M.G. Fox, and K.W. Able. 2009. Influence of flood frequency, temperature and population density on migration of Fundulus heteroclitus in semi-isolated marsh pond habitats. Marine Ecology Progress Series 391: 85–96.CrossRefGoogle Scholar
  22. Kimball, M.E., and K.W. Able. 2007a. Nekton utilization of intertidal salt marsh creeks: Tidal influences in natural Spartina, invasive Phragmites, and marshes treated for Phragmites removal. Journal of Experimental Marine Biology and Ecology 346: 87–101.CrossRefGoogle Scholar
  23. Kimball, M.E., and K.W. Able. 2007b. Tidal utilization of nekton in Delaware Bay restored and reference intertidal salt marsh creeks. Estuaries and Coasts 30(6): 1075–1087.Google Scholar
  24. Kneib, R.T. 1986. Size-specific patterns in the reproductive cycle of the killifish, Fundulus heteroclitus (Pisces: Fundulidae) from Sapela Island, Georgia. Copeia 1986: 342–351.CrossRefGoogle Scholar
  25. Kneib, R.T. 1994. Spatial pattern, spatial scale and feeding in fishes. In Theory and application in fish feeding ecology, The Belle Baruch Library in Marine Science No. 18, ed. D.J. Stouder, K.L. Fresh, and R.J. Feller, 171–185. Columbia: University of South Carolina Press.Google Scholar
  26. Kneib, R.T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography. Marine Biology Annual Review 35: 163–220.Google Scholar
  27. Kneib, R.T. 2003. Bioenergetics and landscape considerations for scaling expectations of nekton production from intertidal marshes. Marine Ecology Progress Series 264: 279–296.CrossRefGoogle Scholar
  28. Kneib, R.T., and A.H. Craig. 2001. Efficacy of minnow traps for sampling mummichogs in tidal marshes. Estuaries 24(6A): 884–893.CrossRefGoogle Scholar
  29. Kneib, R.T., and S.L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 106: 227–238.CrossRefGoogle Scholar
  30. Lathrop, R.G., M.B. Cole, and R.D. Showalter. 2000. Quantifying the habitat structure and spatial pattern of New Jersey (USA) salt marshes under different management regimes. Wetlands Ecology and Management 8: 163–172.CrossRefGoogle Scholar
  31. Lotrich, V.A. 1975. Summer home range and movements of Fundulus heteroclitus (Pisces: Cyprinodontidae) in a tidal creek. Ecology 56: 191–198.CrossRefGoogle Scholar
  32. Minello, T.J., R.J. Zimmerman, and R. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh. Wetlands 14(3): 184–198.CrossRefGoogle Scholar
  33. Minello, T.J., K.W. Able, M.P. Weinstein, and C.G. Hays. 2003. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth, and survival through meta-analysis. Marine Ecology Progress Series 246: 39–59.CrossRefGoogle Scholar
  34. Mitsch, W.J., and J.G. Gosselink. 1993. Wetlands. New York: Van Nostrand Reinhold.Google Scholar
  35. Nemerson, D.M., and K.W. Able. 2003. Spatial and temporal patterns in the distribution and feeding habits of Morone saxatilis, in marsh creeks of Delaware Bay, USA. Fisheries Management and Ecology 20: 337–348.CrossRefGoogle Scholar
  36. Peterson, C.H., K.W. Able, C.F. DeJong, M.F. Piehler, C.A. Simenstad, and J.B. Zedler. 2008. Practical proxies for tidal marsh ecosystem services: Application to injury and restoration. In Advances in marine biology, vol. 54, ed. D.W. Sims, 221–266. San Diego: Elsevier.Google Scholar
  37. Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42(2): 201–237.CrossRefGoogle Scholar
  38. Roman, C.T., K.B. Raposa, S.C. Adamowica, M.J. James-Pirri, and J.G. Catena. 2002. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh. Restoration Ecology 10: 450–460.CrossRefGoogle Scholar
  39. Rountree, R.A. 1992. Fish and macroinvertebrate community structure and habitat use patterns in salt marsh creeks of southern New Jersey, with a discussion of marsh carbon export. Ph.D. dissertation, Rutgers, The State University of New Jersey, New Brunswick, NJGoogle Scholar
  40. Rountree, R.A., and K.W. Able. 1992. Foraging habits, growth, and temporal patterns of salt-marsh creek habitat use by young-of-year summer flounder in New Jersey. Transactions of the American Fisheries Society 121: 765–776.CrossRefGoogle Scholar
  41. Rountree, R.A., and K.W. Able. 2007. Spatial and temporal habitat use patterns for salt marsh nekton: Implications for ecological functions. Aquatic Ecology 41: 25–45.CrossRefGoogle Scholar
  42. Rozas, L.P., and C.T. Hackney. 1983. The importance of oligohaline estuarine wetland habitats to fisheries resources. Wetlands 3: 77–89.CrossRefGoogle Scholar
  43. Ruiz, G.M., A.H. Hines, and M.H. Posey. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay. Marine Ecology Progress Series 99: 1–16.CrossRefGoogle Scholar
  44. Schick, R.S., S.R. Loarie, F. Colchero, B.D. Best, A. Boustany, D.A. Conde, P.N. Halpin, L.N. Joppa, C.M. McClellan, and J.S. Clark. 2008. Understanding movement data and movement processes: Current and emerging directions. Ecology Letters 11: 1338–1350.CrossRefGoogle Scholar
  45. Secor, D.H., and J.R. Rooker. 2005. Connectivity in the life histories of fishes that use estuaries. Estuarine, Coastal and Shelf Science 64: 1–3.CrossRefGoogle Scholar
  46. Smith, K.J., and K.W. Able. 1994. Salt-marsh tide pools as winter refuges for the mummichog, Fundulus heteroclitus, in New Jersey. Estuaries 17(1B): 226–234.CrossRefGoogle Scholar
  47. Smith, K.J., G. Taghon, and K.W. Able. 2000. Trophic linkages in marshes: Ontogenetic changes in diet for young-of-the-year mummichog, Fundulus heteroclitus. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 221–237. The Netherlands: Kluwer.Google Scholar
  48. Suk, N.S., Q. Guo, and N.P. Psuty. 1999. Suspended solids flux between salt marsh and adjacent bay: a long-term continuous measurement. Estuarine, Coastal and Shelf Science 49: 61–81.CrossRefGoogle Scholar
  49. Teo, S.L.H., and K.W. Able. 2003a. Growth and production of the mummichog (Fundulus heteroclitus) in a restored salt marsh. Estuaries 26(1): 51–63.CrossRefGoogle Scholar
  50. Teo, S.L.H., and K.W. Able. 2003b. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh. Estuaries 26(3): 720–730.CrossRefGoogle Scholar
  51. Tupper, M., and K.W. Able. 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: Comparison of a restored and a reference marsh. Marine Biology 137(5/6): 1049–1058.CrossRefGoogle Scholar
  52. Turchin, P. 1998. Quantitative analysis of movement: Measuring and modeling population redistribution in animals and plants. Sunderland: Sinauer Associates, Inc.Google Scholar
  53. Vanreusel, W., and H. Van Dyck. 2007. When functional habitat does not match vegetation types: A resource-based approach to map butterfly habitat. Biological Conservation 135: 202–211.CrossRefGoogle Scholar
  54. Weinstein, M.P., and J.H. Balletto. 1999. Does the common reed, Phragmites australis, affect essential fish habitat? Estuaries 22(3B): 793–802.CrossRefGoogle Scholar
  55. Weinstein, M.P., J.M. Teal, J.H. Balletto, and K.A. Strait. 2001. Restoration principles emerging from one of the world’s largest tidal marsh restoration projects. Wetlands Ecology and Management 9: 387–407.CrossRefGoogle Scholar
  56. Winker, K., J.H. Rappole, and M.A. Ramos. 1995. The use of movement data as an assay of habitat quality. Oecologia 101: 211–216.CrossRefGoogle Scholar
  57. Zedler, J.B. 2001. Handbook for restoring tidal wetlands. Boca Raton: CRC.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2012

Authors and Affiliations

  • Kenneth W. Able
    • 1
  • Deborah N. Vivian
    • 2
  • Gina Petruzzelli
    • 1
  • Stacy M. Hagan
    • 1
  1. 1.Marine Field Station, Institute of Marine and Coastal SciencesRutgers UniversityTuckertonUSA
  2. 2.U.S. Environmental Protection Agency, National Health and Environmental Effects LaboratoryGulf Ecology DivisionGulf BreezeUSA

Personalised recommendations