Estuaries and Coasts

, Volume 35, Issue 2, pp 665–681 | Cite as

Frontogenesis and Frontal Progression of a Trapping-Generated Estuarine Convergence Front and Its Influence on Mixing and Stratification

  • Sarah N. GiddingsEmail author
  • Derek A. Fong
  • Stephen G. Monismith
  • C. Chris Chickadel
  • Kathleen A. Edwards
  • William J. Plant
  • Bing Wang
  • Oliver B. Fringer
  • Alexander R. Horner-Devine
  • Andrew T. Jessup


Estuarine fronts are well known to influence transport of waterborne constituents such as phytoplankton and sediment, yet due to their ephemeral nature, capturing the physical driving mechanisms and their influence on stratification and mixing is difficult. We investigate a repetitive estuarine frontal feature in the Snohomish River Estuary that results from complex bathymetric shoal/channel interactions. In particular, we highlight a trapping mechanism by which mid-density water trapped over intertidal mudflats converges with dense water in the main channel forming a sharp front. The frontal density interface is maintained via convergent transverse circulation driven by the competition of lateral baroclinic and centrifugal forcing. The frontal presence and propagation give rise to spatial and temporal variations in stratification and vertical mixing. Importantly, this front leads to enhanced stratification and suppressed vertical mixing at the end of the large flood tide, in contrast to what is found in many estuarine systems. The observed mechanism fits within the broader context of frontogenesis mechanisms in which varying bathymetry drives lateral convergence and baroclinic forcing. We expect similar trapping-generated fronts may occur in a wide variety of estuaries with shoal/channel morphology and/or braided channels and will similarly influence stratification, mixing, and transport.


Front Frontogenesis Trapping Convergence front Lateral circulation 



Thanks to those at the Stanford EFML, APL–UW, and other members of the COHSTREX team who provided help in the field, particularly N. Nidzieko, J. Hench, K. Davis, L. Walter, B. Hayworth, P.J. Rusello, T. Litchendorf, E. Boget, C. Craig, and F. Karig. Special thanks to Nick Nidzieko, Mark Stacey, and Rocky Geyer for helpful discussions and to three anonymous reviewers whose detailed responses greatly improved this manuscript. This research was supported by the Office of Naval Research through grants N00014-05-1-0485 and N00014-10-1-0236. Additional support for SNG was provided by the National Science Foundation, a Stanford Graduate Fellowship, and the Achievement Rewards for College Scientists Foundation.

Supplementary material

12237_2011_9453_MOESM1_ESM.doc (8 mb)
ESM 1 (DOC 8187 kb)


  1. Ashmore, P.E., R.I. Ferguson, K.L. Prestegaard, P.J. Ashworth, and C. Paola. 1992. Secondary flow in anabranch confluences of a braided, gravel-bed stream. Earth Surface Processes and Landforms 17: 299–311. doi: 10.1002/esp.3290170308.CrossRefGoogle Scholar
  2. Braun, N., F. Ziemer, A. Bezuglov, M. Cysewski, and G. Schymura. 2008. Sea-surface current features observed by Doppler radar. IEEE Transactions on Geoscience and Remote Sensing 46: 1125–1133.CrossRefGoogle Scholar
  3. Brown, J., W.R. Turrell, and J.H. Simpson. 1991. Aerial surveys of axial convergent fronts in the UK estuaries and the implications for pollution. Marine Pollution Bulletin 22: 397–400.CrossRefGoogle Scholar
  4. Chant, R.J. 2002. Secondary circulation in a region of flow curvature: relationship with tidal forcing and river discharge. Journal of Geophysical Research 107: 3131–3141.CrossRefGoogle Scholar
  5. Chant, R.J., and R.E. Wilson. 1997. Secondary circulation in a highly stratified estuary. Journal of Geophysical Research 102: 23207–23215.CrossRefGoogle Scholar
  6. Chickadel, C.C., A.R. Horner-Devine, S.A. Talke, and A.T. Jessup. 2009. Vertical boil propagation from a submerged estuarine sill. Geophysical Research Letters 36: L10601. doi: 10.1029/2009GL037278.CrossRefGoogle Scholar
  7. Dronkers, J., and J.T.F. Zimmerman. 1982. Some principles of mixing in tidal lagoons. Oceanologica acta. Proceedings of the International Symposium on Coastal Lagoons, Bordeaux, France, 9–14 September, 1981. pp. 107–117.Google Scholar
  8. Duck, R.W., and S.F.K. Wewetzer. 2001. Impact of frontal systems on estuarine sediment and pollutant dynamics. The Science of the Total Environment 266: 23–31.CrossRefGoogle Scholar
  9. Emery, W.J., and R.E. Thomson. 2004. Data analysis methods in physical oceanography, 2nd ed. Amsterdam: Elsevier.Google Scholar
  10. Falcon, M. 1984. Secondary flow in curved open channels. Annual Review of Fluid Mechanics 16: 179–193.CrossRefGoogle Scholar
  11. Farmer, D.M., E.A. D’asaro, M.V. Trevorrow, and G.T. Dairiki. 1995. Three-dimensional structure in a tidal convergence front. Continental Shelf Research 15: 1649–1673.CrossRefGoogle Scholar
  12. Farmer, D., R. Pawlowicz, and R. Jiang. 2002. Tilting separation flows: a mechanism for intense vertical mixing in the coastal ocean. Dynamics of Atmospheres and Oceans 36: 43–58. doi: 10.1016/S0377-0265(02)00024-6.CrossRefGoogle Scholar
  13. Fischer, H.B. 1972. Mass transport mechanisms in partially stratified estuaries. Journal of Fluid Mechanics 53: 671–687.CrossRefGoogle Scholar
  14. Fischer, H.B., E.J. List, R.C.Y. Koh, J. Imberger, and N.H. Brooks. 1979. Mixing in inland and coastal waters. San Diego: Academic.Google Scholar
  15. Franks, P.J.S. 1992. Phytoplankton blooms at fronts: patterns, scales, and physical forcing mechanisms. Reviews in Aquatic Sciences 6: 121–137.Google Scholar
  16. Fringer, O.B., M. Gerritsen, and R.L. Street. 2006. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling 14: 139–173. doi: 10.1016/j.ocemod.2006.03.006.CrossRefGoogle Scholar
  17. Gargett, A.E., and J.N. Moum. 1995. Mixing efficiencies in turbulent tidal fronts: results from direct and indirect measurements of density flux. Journal of Physical Oceanography 25: 2583–2608.CrossRefGoogle Scholar
  18. Geyer, W.R. 1993. Three-dimensional tidal flow around headlands. Journal of Geophysical Research 98: 955–966.CrossRefGoogle Scholar
  19. Geyer, W.R., J.H. Trowbridge, and M.M. Bowen. 2000. The dynamics of a partially mixed estuary. Journal of Physical Oceanography 30: 11629–11637.CrossRefGoogle Scholar
  20. Giddings, S.N., D.A. Fong, and S.G. Monismith. 2011. The role of straining and advection in the intratidal evolution of stratification, vertical mixing, and longitudinal dispersion of a shallow, macrotidal, salt-wedge estuary. Journal of Geophysical Research 116: C03003. doi: 10.1029/2010JC006482.CrossRefGoogle Scholar
  21. Handler, R.A., R.P. Mied, T.E. Evans, and T.F. Donato. 2001. Convergence fronts in tidally forced rotating estuaries. Journal of Geophysical Research 106: 27145–27162. doi: 10.1029/2000JC000637.CrossRefGoogle Scholar
  22. Haring, D. 2002. Salmonid habitat limiting factors analysis, final report. Olympia: Washington State Conservation Commission.Google Scholar
  23. Huzzey, L.M., and J.M. Brubaker. 1988. The formation of longitudinal fronts in a coastal plain estuary. Journal of Geophysical Research 93: 1329–1334. doi: 10.1029/JC093iC02p01329.CrossRefGoogle Scholar
  24. Jay, D.A., and J.D. Smith. 1990. Residual circulation in shallow estuaries. 1. Highly stratified, narrow estuaries. Journal of Geophysical Research 95: 711–731. doi: 10.1029/JC095iC01p00711.CrossRefGoogle Scholar
  25. Kalkwijk, J.P.T., and R. Booij. 1986. Adaptation of secondary flow in nearly-horizontal flow. Journal of Hydraulic Research 24: 19–37.CrossRefGoogle Scholar
  26. Klemas, V., and D.F. Polis. 1977. A study of density fronts and their effects on coastal pollutants. Remote Sensing of Environment 6: 95–126.CrossRefGoogle Scholar
  27. Lacy, J.R., and S.G. Monismith. 2001. Secondary currents in a curved, stratified, estuarine channel. Journal of Geophysical Research 106: 31283–31302.CrossRefGoogle Scholar
  28. Lacy, J.R., M.T. Stacey, J.R. Burau, and S.G. Monismith. 2003. Interaction of lateral baroclinic forcing and turbulence in an estuary. Journal of Geophysical Research 108: 3089–3103. doi: 10.1029/2002JC001392.CrossRefGoogle Scholar
  29. Largier, J.L. 1993. Estuarine fronts: how important are they? Estuaries 16: 1–11.CrossRefGoogle Scholar
  30. Le Fevre, J. 1986. Aspects of the biology of frontal systems. Advances in Marine Biology 23: 163–299.Google Scholar
  31. Li, C., and J. O’Donnell. 1997. Tidally driven residual circulation in shallow estuaries with lateral depth variation. Journal of Geophysical Research 102: 27915–27929.CrossRefGoogle Scholar
  32. Lu, Y., and R.G. Lueck. 1999. Using a broadband ADCP in a tidal channel. Part II: Turbulence. Journal of Atmospheric and Oceanic Technology 16: 1568–1579.CrossRefGoogle Scholar
  33. MacDonald, D.G., and W.R. Geyer. 2004. Turbulent energy production and entrainment at a highly stratified estuarine front. Journal of Geophysical Research 109: C05004.CrossRefGoogle Scholar
  34. MacVean, L.J., and M.T. Stacey. 2010. Estuarine dispersion from tidal trapping: a new analytical framework. Estuaries and Coasts 1–15. doi: 10.1007/s12237-010-9298-x.
  35. Nidzieko, N.J., D.A. Fong, and J.L. Hench. 2006. Comparison of Reynolds stress estimates derived from standard and fast-ping ADCPs. Journal of Atmospheric and Oceanic Technology 23: 854–861.CrossRefGoogle Scholar
  36. Nidzieko, N.J., J.L. Hench, and S.G. Monismith. 2009. Lateral circulation in well-mixed and stratified estuarine flows with curvature. Journal of Physical Oceanography 39: 831–851.CrossRefGoogle Scholar
  37. Nunes, R.A., and J.H. Simpson. 1985. Axial convergence in a well-mixed estuary. Estuarine, Coastal and Shelf Science 20: 637–649. doi: 10.1016/0272-7714(85)90112-X.CrossRefGoogle Scholar
  38. O’Donnell, J. 1993. Surface fronts in estuaries: a review. Estuaries 16: 12–39.CrossRefGoogle Scholar
  39. O’Donnell, J., S.G. Ackleson, and E.R. Levine. 2008. On the spatial scales of a river plume. Journal of Geophysical Research 113: C04017. doi: 10.1029/2007JC004440.CrossRefGoogle Scholar
  40. Okubo, A. 1973. Effect of shoreline irregularities on streamwise dispersion in estuaries and other embayments. Journal of Sea Research 6: 213–224.CrossRefGoogle Scholar
  41. Plant, W.J., W.C. Keller, and K. Hayes. 2005. Measurement of river surface currents with coherent microwave systems. IEEE Transactions on Geoscience and Remote Sensing 43: 1242–1257.CrossRefGoogle Scholar
  42. Plant, W.J., R. Branch, G. Chatham, C.C. Chickadel, K. Hayes, B. Hayworth, A.R. Horner-Devine, A.T. Jessup, D.A. Fong, O.B. Fringer, S.N. Giddings, S.G. Monismith, and B. Wang. 2009. Remotely sensed river surface features compared with modeling and in situ measurements. Journal of Geophysical Research 114: C11002. doi: 10.1029/2009JC005440.CrossRefGoogle Scholar
  43. Rhoads, B.L. 2006. Scaling of confluence dynamics in river systems: some general considerations. In River, coastal and estuarine morphodynamics, ed. G. Parker and M.H. Garcia, 379–387. London: Taylor & Francis.Google Scholar
  44. Rhoads, B.L., and A.N. Sukhodolov. 2001. Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resources Research 37: 2393–2410. doi: 10.1029/2001WR000316.CrossRefGoogle Scholar
  45. Scully, M.E., and C.T. Friedrichs. 2007. The importance of tidal and lateral asymmetries in stratification to residual circulation in partially mixed estuaries. Journal of Physical Oceanography 37: 1496–1511.CrossRefGoogle Scholar
  46. Scully, M.E., W.R. Geyer, and J.A. Lerczak. 2009. The influence of lateral advection on the residual estuarine circulation: a numerical modeling study of the Hudson River estuary. Journal of Physical Oceanography 39: 107.CrossRefGoogle Scholar
  47. Sharples, J., and J.H. Simpson. 1993. Periodic frontogenesis in a region of freshwater influence. Estuaries 16: 74–82.CrossRefGoogle Scholar
  48. Simpson, J.H., and J.R. Hunter. 1974. Fronts in the Irish Sea. Nature 250: 404–406. doi: 10.1038/250404a0.CrossRefGoogle Scholar
  49. Simpson, J.H., and W.R. Turrell. 1986. Convergent fronts in the circulation of tidal estuaries. In Estuarine variability, ed. D.A. Wolfe, 139–152. New York: Academic Press.Google Scholar
  50. Simpson, J.H., J. Brown, J. Matthews, and G. Allen. 1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13: 125–132.CrossRefGoogle Scholar
  51. Smith, R. 1976. Longitudinal dispersion of a buoyant contaminant in a shallow channel. Journal of Fluid Mechanics 78: 677–688.CrossRefGoogle Scholar
  52. Smith, R. 1980. Buoyancy effects upon longitudinal dispersion in wide well-mixed estuaries. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences 296: 467–496.CrossRefGoogle Scholar
  53. Smith, R. 1996. Combined effects of buoyancy and tides upon longitudinal dispersion. Coastal and Estuarine Studies 53: 319–329.CrossRefGoogle Scholar
  54. Stacey, M.T., S.G. Monismith, and J.R. Burau. 1999. Measurements of Reynolds stress profiles in unstratified tidal flow. Journal of Geophysical Research 104: 10933–10949. doi: 10.1029/1998JC900095.CrossRefGoogle Scholar
  55. Szupiany, R.N., M.L. Amsler, J.L. Best, and D.R. Parsons. 2007. Comparison of fixed- and moving-vessel flow measurements with an aDp in a large river. Journal of Hydraulic Engineering 133: 1299–1309. doi: 10.1061/(ASCE)0733-9429(2007)133:12(1299.CrossRefGoogle Scholar
  56. Turner, J.S. 2001. The stability of a free shear layer. In in Fluids, reprintth ed, ed. B. Effects, 92–107. Cambridge: Cambridge University Press.Google Scholar
  57. Valle-Levinson, A., and K.M.M. Lwiza. 1995. The effects of channels and shoals on exchange between the Chesapeake Bay and the adjacent ocean. Journal of Geophysical Research 100: 18551–18563.CrossRefGoogle Scholar
  58. Valle-Levinson, A., C. Li, K. Wong, and K.M.M. Lwiza. 2000. Convergence of lateral flow along a coastal plain estuary. Journal of Geophysical Research 105: 17045–17061. doi: 10.1029/2000JC900025.CrossRefGoogle Scholar
  59. Wang, B., O.B. Fringer, S.N. Giddings, and D.A. Fong. 2009. High-resolution simulations of a macrotidal estuary using SUNTANS. Ocean Modelling 26: 60–85. doi: 10.1016/j.ocemod.2008.08.006.CrossRefGoogle Scholar
  60. Wang, B., S.N. Giddings, O.B. Fringer, E.S. Gross, D.A. Fong, and S.G. Monismith. 2011. Modeling and understanding turbulent mixing in a macrotidal salt wedge estuary. Journal of Geophysical Research 116: C02036. doi: 10.1029/2010J006135.CrossRefGoogle Scholar
  61. Wolanski, E., and W.M. Hamner. 1988. Topographically controlled fronts in the ocean and their biological influence. Science 241: 177–181.CrossRefGoogle Scholar
  62. Yang, Z., and T. Khangaonkar. 2005. Modeling of salt intrusion, intertidal mixing, and circulation in a braided estuary. Journal Coastal Research 52: 171–180. doi: 10.2112/1551-5036-52.sp1.171.Google Scholar
  63. Yang, Z., T. Khangaonkar, M. Calvi, and K. Nelson. 2010. Simulation of cumulative effects of nearshore restoration projects on estuarine hydrodynamics. Ecological Modelling 221: 969–977. doi: 10.1016/j.ecolmodel.2008.12.006.CrossRefGoogle Scholar
  64. Yoder, J.A., S.G. Ackleson, R.T. Barber, P. Flament, and W.M. Balch. 1994. A line in the sea. Nature 371: 689–692.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2011

Authors and Affiliations

  • Sarah N. Giddings
    • 1
    Email author
  • Derek A. Fong
    • 2
  • Stephen G. Monismith
    • 2
  • C. Chris Chickadel
    • 3
  • Kathleen A. Edwards
    • 4
  • William J. Plant
    • 3
  • Bing Wang
    • 2
  • Oliver B. Fringer
    • 2
  • Alexander R. Horner-Devine
    • 5
  • Andrew T. Jessup
    • 3
  1. 1.School of OceanographyUniversity of WashingtonSeattleUSA
  2. 2.Department Civil and Environmental EngineeringStanford UniversityStanfordUSA
  3. 3.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA
  4. 4.Ocean Power TechnologiesPenningtonUSA
  5. 5.Department Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations