Estuaries and Coasts

, Volume 35, Issue 1, pp 92–108 | Cite as

The Influence of Wave Energy and Sediment Transport on Seagrass Distribution

Article

Abstract

A coupled hydrodynamic and sediment transport model (Delft3D) was used to simulate the water levels, waves, and currents associated with a seagrass (Zostera marina) landscape along a 4-km stretch of coast in Puget Sound, WA, USA. A hydroacoustic survey of seagrass percent cover and nearshore bathymetry was conducted, and sediment grain size was sampled at 53 locations. Wave energy is a primary factor controlling seagrass distribution at the site, accounting for 73% of the variability in seagrass minimum depth and 86% of the variability in percent cover along the shallow, sandy portions of the coast. A combination of numerical simulations and a conceptual model of the effect of sea-level rise on the cross-shore distribution of seagrass indicates that the area of seagrass habitat may initially increase and that wave dynamics are an important factor to consider in predicting the effect of sea-level rise on seagrass distributions in wave-exposed areas.

Keywords

Aquatic vegetation Hydrodynamics Numerical modeling Sea-level rise Puget Sound 

References

  1. Boese, B.L., B.D. Robbins, and G. Thursby. 2005. Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary. Botanica Marina 48: 274–283.CrossRefGoogle Scholar
  2. Booij, N., R.C. Ris, and L.H. Holthuijsen. 1999. A third-generation wave model for coastal regions, 1, model description and validation. Journal of Geophysical Research 104: 7649–7666.CrossRefGoogle Scholar
  3. Bouma, T.J., M.B. De Vries, G. Peralta, I.C. Tanczos, J. van de Koppel, and P.M.J. Herman. 2005. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86: 2187–2199.CrossRefGoogle Scholar
  4. Bradley, K., and C. Houser. 2009. Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. Journal of Geophysical Research 114: F01004.CrossRefGoogle Scholar
  5. Carr, J., P. D’Odorico, K. McGlathery, and P. Wiberg. 2010. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: role of feedbacks with sediment resuspension and light attenuation. Journal of Geophysical Research 115: G03011.CrossRefGoogle Scholar
  6. Chambers, P.A. 1987. Nearshore occurrence of submerged aquatic macrophytes in relation to wave action. Canadian Journal of Fisheries and Aquatic Science 44: 1666–1669.CrossRefGoogle Scholar
  7. Daraio, J.A., L.J. Weber, and T.J. Newton. 2010. Hydrodynamic modeling of juvenile mussel dispersal in a large river: the potential effects of bed shear stress and other parameters. Journal of the North American Benthological Society 29: 838–851.CrossRefGoogle Scholar
  8. Davis, J.C. 2002. Statistics and data analysis in geology, 3rd ed, 638. New York: Wiley and Sons.Google Scholar
  9. de Boer, W.F. 2007. Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591: 5–24.CrossRefGoogle Scholar
  10. Deegan, L.A. 2002. Lessons learned: the effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Estuaries 25: 727–742.CrossRefGoogle Scholar
  11. Depew, D.C., A.W. Stevens, R.E.H. Smith, and R.E. Hecky. 2009. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder. Limnology and Oceanography: Methods 7: 693–705.CrossRefGoogle Scholar
  12. Dijkstra, J.T., and R.E. Uittenbogaard. 2010. Modeling the interaction between flow and highly flexible aquatic vegetation. Water Resources Research 46: W12547.CrossRefGoogle Scholar
  13. Duarte, C.M. 1992. Seagrass depth limits. Aquatic Botany 40: 363–377.CrossRefGoogle Scholar
  14. Duarte, C.M., J. Terrados, N.S.R. Agawin, M.D. Fortes, B. Fortes, S.S. Bach, and W.J. Kenworthy. 1997. Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology Progress Series 147: 285–294.CrossRefGoogle Scholar
  15. Elias, E.P.L., and J.F. van der Spek. 2005. Long-term morphodynamic evolution of Texel Inlet and its ebb-tidal delta (The Netherlands). Marine Geology 225: 5–21.CrossRefGoogle Scholar
  16. Fagherazzi, S., and P.L. Wiberg. 2009. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research 114: F03022.CrossRefGoogle Scholar
  17. Finlayson, D.P. (2005). Combined bathymetry and topography of the Puget Lowland, Washington State. Digital data available at: http://www.ocean.washington.edu/data/pugetsound/psdem2005.html.
  18. Finlayson, D.P. (2006). The Geomorphology of Puget Sound Beaches. PhD Dissertation, University of Washington, 196 p.Google Scholar
  19. Fonseca, M.S., and S.S. Bell. 1998. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Marine Ecology Progress Series 171: 109–121.CrossRefGoogle Scholar
  20. Fonseca, M.S., and J.A. Calahan. 1992. A preliminary evaluation of wave attenuation by 4 species of seagrass. Estuarine, Coastal, and Shelf Science 35: 565–576.CrossRefGoogle Scholar
  21. Fonseca, M.S., P.E. Whitfield, N.M. Kelly, and S.S. Bell. 2002. Modeling seagrass landscape pattern and associated ecological attributes. Ecological Applications 12: 218–237.CrossRefGoogle Scholar
  22. Frederiksen, M., D. Krause-Jensen, M. Holmer, and J.S. Laursen. 2004. Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting. Aquatic Botany 78: 147–165.CrossRefGoogle Scholar
  23. Gaeckle, J., P. Dowty, H. Berry, and L. Ferrier. 2009. Puget Sound submerged vegetation monitoring project—2008 monitoring report, 37. Olympia: Nearshore Habitat Program, Washington Department of Natural Resources.Google Scholar
  24. Gelfenbaum, G., Stevens, A.W., Warrick, J.A., Elias, E. (2009). Modeling sediment transport and delta morphology on the dammed Elwha River, Washington State, USA, Paper No. 109. In M. Mizuguchi, S. Sato (Eds.), Proceedings of Coastal Dynamics 2009: Impact of Human Activities on Dynamic Coastal Processes. Tokyo, Japan.Google Scholar
  25. Grossman, E.E., Stevens, A.W., Gelfenbaum, G., Curran, C. (2007). Nearshore circulation and water column properties in the Skagit River Delta, northern Puget Sound, Washington—Juvenile Chinook salmon habitat availability in the Swinomish Channel: U.S. Geological Survey Scientific Investigations Report 2007–5120, 96 p.Google Scholar
  26. Hanes, D.M. 2009. Recent technologies usher in a new era of coastal geomorphology research. EOS Transactions of the American Geophysical Union 90: 198–199.CrossRefGoogle Scholar
  27. Infantes, E., J. Terrados, A. Orfila, B. Canellas, and A. Alvarez-Ellacuria. 2009. Wave energy and the upper depth limit distribution of Posidonia oceanica. Botanica Marina 52: 419–427.CrossRefGoogle Scholar
  28. Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York.Google Scholar
  29. Koch, E.W. 2001. Beyond light: physical, geological, and geochemical parameters as possible submerged aquatic vegetation habitat requirements. Estuaries 24: 1–17.CrossRefGoogle Scholar
  30. Koch, E.W., Ackerman, J.D., Verduin, J., van Keulen, M. (2006). Fluid dynamics in seagrass ecology- from molecules to ecosystems. In A.W.D. Larkum, R.J. Orth, C.M. Duarte (eds.), Seagrasses: biology, ecology, and conservation. Springer, 691 p.Google Scholar
  31. Lacy, J.R., and S. Wyllie-Echeverria. 2011. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies. Limnology and Oceanography: Fluids and Environments 1: 38–55.Google Scholar
  32. Larkum, A.W.D., A.J. McComb, and S.A. Sheperd. 1989. Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region, 841. Amsterdam: Elsevier.Google Scholar
  33. Lavelle, J.W., E.D. Cokelet, and G.A. Cannon. 1991. A model study of density intrusion into and circulations within a deep, silled estuary: Puget Sound. Journal of Geophysical Research 96: 16779–16800.CrossRefGoogle Scholar
  34. Law, B.A., P.S. Hill, T.G. Milligan, K.J. Curran, P.L. Wiberg, and R.A. Wheatcroft. 2007. Size sorting of fine-grained sediments during erosion: results from the western Gulf of Lions. Continental Shelf Research 28: 1935–1946.CrossRefGoogle Scholar
  35. Lawson, S.E., P.L. Wiberg, K.J. McGlathery, and D.C. Fugate. 2007. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries and Coasts 30: 102–112.Google Scholar
  36. Lesser, G.R., J.A. Roelvink, J.A.T.M. van Kester, and G.S. Stelling. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering 51: 883–915.CrossRefGoogle Scholar
  37. Lowe, R.J., J.L. Falter, S.G. Monismith, and M.J. Atkinson. 2009. A numerical study of the circulation in a coastal reef-lagoon system. Journal of Geophysical Research 114: C06022.CrossRefGoogle Scholar
  38. Mass, C. 2008. The weather of the Pacific Northwest, 280. Seattle: University of Washington Press.Google Scholar
  39. Mote, P., Petersen, A., Reeder, S., Shipman, H., Binder, L.W. (2008). Sea level rise in the coastal waters of Washington State. Climate Impacts Group and Washington State Department of Ecology Technical Document. 11 p.Google Scholar
  40. Nearshore Habitat Program (2001). The Washington State ShoreZone inventory. Washington State Department of Natural Resources, Olympia, WA. Digital data available at http://fortress.wa.gov/dnr/app1/dataweb/dmmatrix.html.
  41. Noble, M.A., Gartner, A.L., Paulson, A.J., Xu, J., Josberger, E.G., Curran, C. (2006). Transport pathways in the lower reaches of Hood Canal. U.S. Geological Survey Open-File Report 2006–1001. 35 pp.Google Scholar
  42. Norris, J.G., Wyllie-Echeverria, S., Mumford, T., Bailey, A., Turner, T. 1997. Estimating basal area coverage of subtidal seagrass beds using underwater videography. Aquatic Botany 58:269–287.CrossRefGoogle Scholar
  43. Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences 28: 929–937.CrossRefGoogle Scholar
  44. Peralta, G., F.G. Brun, J.L. Perez-Llorens, and T.J. Bouma. 2006. Direct effects of current velocity on the growth, morphometry and architecture of seagrasses: a case study on Zostera noltii. Marine Ecology Progress Series 327: 135–142.CrossRefGoogle Scholar
  45. Sabol, B.M., R.E. Melton, R. Chamberlain, P. Doering, and K. Haunert. 2002. Evaluation of a digital echosounder system for detection of submerged aquatic vegetation. Estuaries 25: 133–141.CrossRefGoogle Scholar
  46. Schoenmakers, N.W.A. (2007). Predicting effects of environmental change in Puget Sound. M.Sc. Thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  47. Short, F.T., and H.A. Neckles. 1999. The effects of global climate change on seagrasses. Aquatic Botany 63: 169–196.CrossRefGoogle Scholar
  48. Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Evironmental Conservation 23: 17–27.CrossRefGoogle Scholar
  49. Soulsby, R.L., L. Hamm, G. Klopman, D. Myrhaug, R.R. Simons, and G.P. Thomas. 1993. Wave-current interaction within and outside the bottom boundary layer. Coastal Engineering 21: 41–67.CrossRefGoogle Scholar
  50. Spargo, E.A., Hess, K.W., White, S.A. (2006). VDatum for the San Juan Islands and Strait of Juan de Fuca with updates for Puget Sound. U.S. Department of Commerce, NOAA Technical Report NOS CS 23, 50 p.Google Scholar
  51. Stevens, A.W., Lacy, J.R., Finlayson, D.P., Gelfenbaum, G. (2008). Evaluation of a single-beam echosounder to map seagrass at two sites in northern Puget Sound, Washington. U.S.Geological Survey Scientific Investigations Report 2008–5009, 45 p.Google Scholar
  52. Storlazzi, C.D., E. Elias, M.E. Field, and M.K. Presto. 2011. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs. doi:10.1007/s00338-011-0723-9.
  53. van der Heide, T., E.H. van Nes, G.W. Geerling, A.J.P. Smolders, T.J. Bouma, and M.M. van Katwijk. 2007. Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10: 1311–1322.CrossRefGoogle Scholar
  54. van Rijn, L.C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications. 715 p.Google Scholar
  55. Walstra, D.J.R., Roelvink, J.A., Groeneweg, J. (2000). Calculation of wave-driven currents in a 3D mean flow model. Proceedings of the 27th International Conference on Coastal Engineering. ASCE, Sydney, Austrailia.Google Scholar
  56. Warrick, J.A., D.A. George, G. Gelfenbaum, P. Ruggiero, G.M. Kaminsky, and M. Beirne. 2009. Beach morphology and change along the mixed grain-size delta of the dammed Elwha River, Washington. Geomorphology 111: 136–148.CrossRefGoogle Scholar
  57. Wiberg, P.L., and C.R. Sherwood. 2008. Calculating wave-generated bottom orbital velocities from surface-wave parameters. Computers and Geosciences 34: 1243–1262.CrossRefGoogle Scholar
  58. Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63: 1309–1313.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation (outside the USA) 2011

Authors and Affiliations

  1. 1.US Geological SurveyPacific Coastal and Marine Science CenterSanta CruzUSA

Personalised recommendations