Estuaries and Coasts

, Volume 34, Issue 1, pp 1–19 | Cite as

Salinity and Chlorophyll a as Performance Measures to Rehabilitate a Mangrove-Dominated Deltaic Coastal Region: the Ciénaga Grande de Santa Marta–Pajarales Lagoon Complex, Colombia

  • Victor H. Rivera-Monroy
  • Robert R. Twilley
  • J. Ernesto Mancera-Pineda
  • Christopher J. Madden
  • Ariel Alcantara-Eguren
  • E. Barry Moser
  • Bror F. Jonsson
  • Edward Castañeda-Moya
  • Oscar Casas-Monroy
  • Paola Reyes-Forero
  • Jorge Restrepo
Article

Abstract

Salinity, water temperature, and chlorophyll a (chl-a) biomass were used as performance measures in the period 1999–2001 to evaluate the effect of a hydrological rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM)–Pajarales lagoon complex, Colombia where freshwater diversions were initiated in 1995 and completed in 1998. The objective of this study was to evaluate how diversions of freshwater into previously hypersaline (>80) environments changed the spatial and temporal distribution of environmental characteristics. Following the diversion, 19 surveys and transects using a flow-through system were surveyed in the CGSM–Pajarales complex to continuously measure selected water quality parameters. Geostatistical analysis indicates that hydrology and salinity regimes and water circulation patterns in the CGSM lagoon are largely controlled by freshwater discharge from the Fundacion, Aracataca, and Sevilla Rivers. Residence times in the CGSM lagoon were similar before (15.5 ± 3.8 days) and after (14.2 ± 2.0 days) the rehabilitation project and indicated that the system is flushed regularly. In contrast, chl-a biomass was highly variable in the CGSM–Pajarales lagoon complex and not related to discharge patterns. Mean annual chl-a biomass (44–250 μg L−1) following the diversion project was similar to values recorded since the 1980s and still remains among the highest reported in coastal systems around the world owing to its unique hydrology regulated by the Magdalena River and Sierra Nevada de Santa Marta watersheds and the high teleconnection to the El Niño Southern Oscillation (ENSO). Our results confirm that the reduction in salinity in the CGSM lagoon and Pajarales complex during 1999–2000 was largely driven by high precipitation (2500 mm) induced by the ENSO–La Niña rather than by the freshwater diversions.

Keywords

Geostatistics Salinity gradient Ciénaga Grande de Santa Marta Colombia Caribbean coast Chlorophyll a gradient Eutrophication LOICZ 

Supplementary material

12237_2010_9353_MOESM1_ESM.doc (352 kb)
Table Supplemental MaterialStatistics, model parameters, and goodness of fit criteria of geostatistical models fitted to temperature in 1999–2001 (St Dev standard deviation, Co nugget variance, C+ Co model variance or sill; C/C = Co structural to model variance ratio). Range parameter (Ao) is a distance (kilometers) where variogram stops increasing. NS no spatial autocorrelation. (DOC 351 kb)

References

  1. Blanco, J.A., E.A. Viloria, and J.C. Narvaez. 2006. ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuarine, Coastal and Shelf Science 66: 157–167.CrossRefGoogle Scholar
  2. Blanco, J.A., J.C.N. Barandica, and E.A. Viloria. 2007. ENSO and the rise and fall of a tilapia fishery in northern Colombia. Fisheries Research 88: 100–108.CrossRefGoogle Scholar
  3. Botero, L., and E. Mancera. 1996a. Síntesis de los cambios de origen antrópico ocurridos en los últimos 40 años en la Ciénaga de Santa Marta (COlombia). Revista de la Academia Colombiana de Ciencias Exactas, Fisicas, y Naturales 20: 465–474.Google Scholar
  4. Botero, L., and J.E. Mancera. 1996b. Sintesis de los cambios de origen antropicos ocurridos en los ultimos 40 años en la Ciénaga Grande de Santa Marta (Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Fisicas, y Naturales 20: 465–474.Google Scholar
  5. Botero, L., and H. Salzwedel. 1999. Rehabilitation of the Ciénaga Grande de Santa Marta, a mangrove-estuarine system in the Caribbean coast of Colombia. Ocean and Coastal Management 42: 243–256.CrossRefGoogle Scholar
  6. Boyer, J.N. 2006. Shifting N and P limitation along a north–south gradient of mangrove estuaries in south Florida. Hydrobiologia 569: 167–177.CrossRefGoogle Scholar
  7. Briceno, H.O., and J.N. Boyer. 2010. Climatic controls on phytoplankton biomass in a sub-tropical estuary, Florida Bay, USA. Estuaries and Coasts 33: 541–553.CrossRefGoogle Scholar
  8. Buddemeier, R.W., S.V. Smith, D.P. Swaney, C.J. Crossland, and B.A. Maxwell. 2008. Coastal typology: An integrative “neutral” technique for coastal zone characterization and analysis. Estuarine, Coastal and Shelf Science 77: 197–205.CrossRefGoogle Scholar
  9. Calero Hernandez, L.A., Y. Tuchkobvenko, and S.A. Lonin. 2000. Aplicacion de la modelacion numerica a la solucion de problemas ambientales en lagunas costeras de Caribe Colombiano: Ciénaga Grande de Santa Marta. Cartagena: Centro de Investigaciones Oceanograficas e Hidrograficas.Google Scholar
  10. Camacho-Ibar, V.F., J.D. Carriquiry, and S.V. Smith. 2003. Non-conservative P and N fluxes and net ecosystem production in San Quintin Bay, Mexico. Estuaries 26: 1220–1237.CrossRefGoogle Scholar
  11. Cloern, J.E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary. Journal of Marine Research 49: 203–221.CrossRefGoogle Scholar
  12. Cloern, J.E. 2001. Review: Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  13. Cloern, J.E., and A.D. Jassby. 2008. Complex seasonal patterns of primary producers at the land–sea interface. Ecology Letters 11: 1294–1303.CrossRefGoogle Scholar
  14. Cloern, J.E., and A.D. Jassby. 2010. Patterns and scales of phytoplankton variability in estuarine–coastal ecosystems. Estuaries and Coasts 33: 230–241.CrossRefGoogle Scholar
  15. Cole, B.E., and J.E. Cloern. 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36: 299–305.CrossRefGoogle Scholar
  16. Costanza, R., W.J. Mitsch, and J.W. Day. 2006. A new vision for New Orleans and the Mississippi delta: Applying ecological economics and ecological engineering. Frontiers in Ecology and the Environment 4: 465–472.CrossRefGoogle Scholar
  17. Day, J.W., D.F. Boesch, E.J. Clairain, G.P. Kemp, S.B. Laska, W.J. Mitsch, K. Orth, H. Mashriqui, D.J. Reed, L. Shabman, C.A. Simenstad, B.J. Streever, R.R. Twilley, C.C. Watson, J.T. Wells, and D.F. Whigham. 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 315: 1679–1684.CrossRefGoogle Scholar
  18. Duarte, C.M., D.J. Conley, J. Carstensen, and M. Sanchez-Camacho. 2009. Return to Neverland: Shifting baselines affect eutrophication restoration targets. Estuaries and Coasts 32: 29–36.CrossRefGoogle Scholar
  19. Fortin, M.-J., and M. Dale. 2008. Spatial analysis: A guide for ecologists. Cambridge: Cambridge University Press.Google Scholar
  20. Fortner, R. 1996. Transform user’s guide. Sterling: Research Systems.Google Scholar
  21. Fourqurean, J.W., S.P. Escorcia, W.T. Anderson, and J.C. Zieman. 2005. Spatial and seasonal variability in elemental content, delta C-13, and delta N-15 of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries 28: 447–461.CrossRefGoogle Scholar
  22. Giannini, A., Y. Kushnir, and M.A. Cane. 2000. Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. Journal of Climate 13: 297–311.CrossRefGoogle Scholar
  23. Giannini, A., M.A. Cane, and Y. Kushnir. 2001a. Interdecadal changes in the ENSO teleconnection to the Caribbean region and the North Atlantic oscillation. Journal of Climate 14: 2867–2879.CrossRefGoogle Scholar
  24. Giannini, A., Y. Kushnir, and M.A. Cane. 2001b. Seasonality in the impact of ENSO and the North Atlantic high on Caribbean rainfall. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere 26: 143–147.CrossRefGoogle Scholar
  25. Gocke, K., P.J.E. Mancera, and A. Vallejo. 2003a. Heterotrophic microbial activity and organic matter degradation in coastal lagoons of Colombia. Revista de Biología Tropical 51: 85–98.Google Scholar
  26. Gocke, K., P.J.E. Mancera, L.A. Vidal, and D. Fonseca. 2003b. Planktonic primary production and community respiration in several coastal lagoons of the outer delta of the Rio Magdalena. Colombia Boletin de Investigaciones Marinas y Costeras 32: 125–144.Google Scholar
  27. Gocke, K., M. Meyerhofer, P.J.E. Mancera, and L.A. Vidal. 2003c. Phytoplankton composition in coastal lagoons of different trophic status in northern Colombia determined by microscope and HPLC-pigment analysis. Boletin de Investigaciones Marinas y Costeras 32: 263–278.Google Scholar
  28. Gocke, K., C. Hernandez, H. Giesenhagen, and H.G. Hoppe. 2004. Seasonal variations of bacterial abundance and biomass and their relation to phytoplankton in the hypertrophic tropical lagoon Ciénaga Grande de Santa Marta, Colombia. Journal of Plankton Research 26: 1429–1439.CrossRefGoogle Scholar
  29. Gordon, D.C., P.R. Boudreau, K.H. Mann, J.E. Ong, W.L. Sivert, S.V. Smith, G. Wattayakorn, P. Wulff, and T. Yanagi. 1996. LOICZ biogeochemical modelling guidelines. Texel: LOICZ.Google Scholar
  30. Habib, E., W.K. Nuttle, V.H. Rivera-Monroy, S. Gautam, J. Wang, E. Meselhe, and R.R. Twilley. 2007. Assessing effects of data limitations on salinity forecasting in Barataria basin, Louisiana, with a Bayesian analysis. Journal of Coastal Research 23: 749–763.CrossRefGoogle Scholar
  31. Hernandez, C.A., and K. Gocke. 1990. Productividad primaria en la Ciénaga Grande de Santa Marta, Colombia. Anales del Instituto de Investigaciones Marinas 19–20: 101–119.Google Scholar
  32. Huang, C.H., H.J. Lin, T.C. Huang, H.M. Su, and J.J. Hung. 2008. Responses of phytoplankton and periphyton to system-scale removal of oyster-culture racks from a eutrophic tropical lagoon. Marine Ecology Progress Series 358: 1–12.CrossRefGoogle Scholar
  33. Hyfield, E.C.G., J. Day, I. Mendelssohn, and G.P. Kemp. 2007. A feasibility analysis of discharge of non-contact, once-through industrial cooling water to forested wetlands for coastal restoration in Louisiana. Ecological Engineering 29: 1–7.CrossRefGoogle Scholar
  34. Hyfield, E.C.G., J.W. Day, J.E. Cable, and D. Justic. 2008. The impacts of re-introducing Mississippi River water on the hydrologic budget and nutrient inputs of a deltaic estuary. Ecological Engineering 32: 347–359.CrossRefGoogle Scholar
  35. Junk, W.J., C.N. da Cunha, K.M. Wantzen, P. Petermann, C. Strussmann, M.I. Marques, and J. Adis. 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68: 278–309.CrossRefGoogle Scholar
  36. Justic, D., R.E. Turner, and N.N. Rabalais. 2003. Climatic influences on riverine nitrate flux: Implications for coastal marine eutrophication and hypoxia. Estuaries 26: 1–11.CrossRefGoogle Scholar
  37. Kaufman, R., and F. Hevert. 1973. El regimen fluviometrico del Rio Magdalena y su importancia para la Ciénaga Grande de Santa Marta. Mitt. Instituto Colombo-Aleman de Investigaciones Cientificas INVEMAR 7: 21–137.Google Scholar
  38. Kelble, C.R., E.M. Johns, W.K. Nuttle, T.N. Lee, R.H. Smith, and P.B. Ortner. 2007. Salinity patterns of Florida Bay. Estuarine, Coastal and Shelf Science 71: 318–334.CrossRefGoogle Scholar
  39. Lane, R.R., J.W. Day, B.D. Marx, E. Reyes, E. Hyfield, and J.N. Day. 2007. The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system. Estuarine, Coastal and Shelf Science 74: 145–154.CrossRefGoogle Scholar
  40. Leal-Florez, J., M. Rueda, and M. Woff. 2008. Role of the non-native fish Oreochromis Niloticlis in the long-term variations of abundance and species composition of the native ichthyofauna in a Caribbean estuary. Bulletin of Marine Science 82: 365–380.Google Scholar
  41. Madden, C.J., and J.W. Day. 1992a. Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. Journal of Plankton Research 14: 1171–1191.CrossRefGoogle Scholar
  42. Madden, C.J., and J.W. Day. 1992b. An instrument system for high-speed mapping of chlorophyll-a and physicochemical variables in surface waters. Estuaries 15: 421–427.CrossRefGoogle Scholar
  43. Mancera, P.J.E., and V.L.A. Vidal. 1994. Florecimeinto de microalgas relacionado con la mortalidad masiva de peces en el complejo lagunar Ciénaga Grande de Santa Marta, Caribe Colombiano. Anales del Instituto de Investigaciones Marinas de Punta de Betin 23: 103–117.Google Scholar
  44. Mitsch, W.J., and J.W. Day. 2006. Restoration of wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and needed research. Ecological Engineering 26: 55–69.CrossRefGoogle Scholar
  45. Moser, E.B., and R.E. Macchiaveli. 1996. Methods for spatial analysis. In Geographical information systems in hydrology, ed. V.P. Singh and M. Fiorentino, 91–113. The Netherlands: Kluwer Academic.Google Scholar
  46. Moser, E.B., V.H. Rivera-Monroy, and A. Alcantara-Eguren. 2004. A comparison of spatial prediction methods using intense spatially-acquired water quality data. In Applied statistics in agriculture, ed. G.A. Milliken, 328. Manhattan: Kansas State University.Google Scholar
  47. Nielsen, D.R., and M.H. Alemi. 1989. Statistical opportunities for analyzing spatial and temporal heterogeneity of field soils. Plant and Soil 115: 285–296.CrossRefGoogle Scholar
  48. Nixon, S.W. 1995. Coastal marine eutrophication—a definition, social causes, and future concerns. Ophelia 41: 199–219.Google Scholar
  49. Nixon, S.W. 2009. Eutrophication and the macroscope. Hydrobiologia 629: 5–19.CrossRefGoogle Scholar
  50. Nuttle, W.K., J.W. Fourqurean, B.J. Cosby, J.C. Zieman, and M.B. Robblee. 2000. Influence of net freshwater supply on salinity in Florida Bay. Water Resources Research 36: 1805–1822.CrossRefGoogle Scholar
  51. Polania, J., J.E. Santos-Martinez, J.E. Mancera-Pineda, and L. Botero. 2000. The coastal lagoon Ciénaga Grande de Santa Marta, Colombia. In Coastal marine ecosystems of Latin America, ed. U. Seeliger and B. Kjerfve. Berlin: Springer.Google Scholar
  52. Rabalais, N.N., R.E. Turner, and W.J. Wiseman. 2002. Gulf of Mexico hypoxia, aka “The dead zone”. Annual Review of Ecology and Systematics 33: 235–263.CrossRefGoogle Scholar
  53. Ramirez, C.S., and M. Rueda. 1999. Diversity and abundance variation of dominant fish species in the river Magdalena delta, Colombia. Revista de Biología Tropical 47: 1067–1079.Google Scholar
  54. Restrepo, J.D. 2008. Applicability of LOICZ catchment-coast continuum in a major Caribbean basin: The Magdalena River, Colombia. Estuarine, Coastal and Shelf Science 77: 214–229.CrossRefGoogle Scholar
  55. Restrepo, J., and B. Kjerfve. 2000a. Magdalena river: Interannual variability (1975–1995) and revised water discharge and sediment load estimates. Journal of Hydrology 235: 137–149.CrossRefGoogle Scholar
  56. Restrepo, J.D., and B. Kjerfve. 2000b. Magdalena river: Interannual variability (1975–1995) and revised water discharge and sediment load estimates. Journal of Hydrology 235: 137–149.CrossRefGoogle Scholar
  57. Restrepo, J.D., and J.P.M. Syvitski. 2006. Assessing the effect of natural controls and land use change on sediment yield in a major Andean river: The Magdalena drainage basin, Colombia. Ambio 35: 65–74.CrossRefGoogle Scholar
  58. Restrepo, J.D., B. Kjerfve, M. Hermelin, and J.C. Restrepo. 2006a. Factors controlling sediment yield in a major South American drainage basin: The Magdalena River, Colombia. Journal of Hydrology 316: 213–232.CrossRefGoogle Scholar
  59. Restrepo, J.D., P. Zapata, J.A. Diaz, J. Garzon-Ferreira, and C.B. Garcia. 2006b. Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Global and Planetary Change 50: 33–49.CrossRefGoogle Scholar
  60. Rivera-Monroy, V.H., R. Twilley, J.E. Mancera-Pineda, E. Castaneda-Moya, O. Casas-Monroy, F. Daza, J. Restrepo, L. Perdomo, E. Reyes, M. Villamil, and F. Pinto. 2001. Estructura y funciónde un ecosistema de manglar a lo largo de una trayectoria de restauración en diferentes niveles de perturbación. Santa Marta: University of Louisiana at Lafayette.Google Scholar
  61. Rivera-Monroy, V.H., R.R. Twilley, D. Bone, D.L. Childers, C. Coronado-Molina, I.C. Feller, J. Herrera-Silveira, R. Jaffe, E. Mancera, E. Rejmankova, J.E. Salisbury, and E. Weil. 2004a. A conceptual framework to develop long-term ecological research and management objectives in the wider Caribbean region. Bioscience 54: 843–856.CrossRefGoogle Scholar
  62. Rivera-Monroy, V.H., R.R. Twilley, E. Medina, E.B. Moser, L. Botero, A.M. Francisco, and E. Bullard. 2004b. Spatial variability of soil nutrients in disturbed riverine mangrove forests at different stages of regeneration in the San Juan River estuary, Venezuela. Estuaries 27: 44–57.CrossRefGoogle Scholar
  63. Rivera-Monroy, V.H., R.R. Twilley, E. Mancera, A. Alcantara-Eguren, E. Castañeda-Moya, O. Casas-Monroy, F. Reyes, J. Restrepo, L. Perdomo, E. Campos, G. Cotes, and E. Villoria. 2006. Adventures and misfortunes in Macondo: Rehabilitation of the Ciénaga Grande de Santa Marta Lagoon Complex, Colombia. Ecotropicos 19: 72–93.Google Scholar
  64. Robertson, G.P. 1988. Geostatistics in ecology: Interpolating with known variance. Ecology 68: 744–748.CrossRefGoogle Scholar
  65. Robertson, G.P., K.M. Klingensmith, M.J. Klug, E.A. Paul, J.R. Crum, and B.G. Ellis. 1997. Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications 7: 158–170.CrossRefGoogle Scholar
  66. Rossi, R.E., D.J. Mulla, A.G. Journel, and E.H. Franz. 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs 62: 277–314.CrossRefGoogle Scholar
  67. Rudnick, D.T., Z. Chen, D.L. Childers, and T.D. Fontaine. 1999. Phosphorous and nitrogen inputs to Florida Bay: The importance of the Everglades watershed. Estuaries 22: 398–416.CrossRefGoogle Scholar
  68. Rueda, M. 2001. Spatial distribution of fish species in a tropical estuarine lagoon: A geostatistical appraisal. Marine Ecology Progress Series 222: 217–226.CrossRefGoogle Scholar
  69. Rueda, M., and O. Defeo. 2003. Spatial structure of fish assemblages in a tropical estuarine lagoon: Combining multivariate and geostatistical techniques. Journal of Experimental Marine Biology and Ecology 296: 93–112.CrossRefGoogle Scholar
  70. Sanchez, R.M., and Y.S. Zea. 2000. Metabolism de nitrogeno y fosforo inorganico disueltos en la columna de agua en una laguna costera tropical (Caribe Colombiano). Caribbean Journal of Science 36: 127–140.Google Scholar
  71. Sheldon, J.E., and M. Alber. 2006. The calculation of estuarine turnover times using freshwater fraction and tidal prism models: A critical evaluation. Estuaries and Coasts 29: 133–146.Google Scholar
  72. Simard, M., V.H. Rivera-Monroy, J.E. Mancera-Pineda, E. Castaneda-Moya, and R.R. Twilley. 2008. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment 112: 2131–2144.CrossRefGoogle Scholar
  73. Sklar, F.H., M.J. Chimney, S. Newman, P. McCormick, D. Gawlik, S.L. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela, and K. Rutchey. 2005. The ecological–societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.Google Scholar
  74. Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada.Google Scholar
  75. Turner, R.E., E.M. Swenson, C.S. Milan, and J.M. Lee. 2007. Hurricane signals in salt marsh sediments: Inorganic sources and soil volume. Limnology and Oceanography 52: 1231–1238.CrossRefGoogle Scholar
  76. Turner, R.E., N.N. Rabalais, and D. Justic. 2008. Gulf of Mexico hypoxia: Alternate states and a legacy. Environmental Science & Technology 42: 2323–2327.CrossRefGoogle Scholar
  77. Twilley, R.R., V.H. Rivera-Monroy, R. Chen, and L. Botero. 1998. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Marine Pollution Bulletin 37: 404–419.CrossRefGoogle Scholar
  78. Twilley, R.R., and V.H. Rivera-Monroy. 2005. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. Journal of Coastal Research 40: 79–93.Google Scholar
  79. Twilley, R.R., and V.H. Rivera-Monroy. 2009. Sediment and nutrient tradeoffs in restoring Mississippi River Delta: Restoration vs eutrophication. Journal of Contemporary Water Resources & Education 141: 1–6.CrossRefGoogle Scholar
  80. Wepener, V. 2007. Carbon, nitrogen and phosphorus fluxes in four sub-tropical estuaries of northern KwaZulu-Natal: Case studies in the application of a mass balance approach. Water Sa 33: 203–214.Google Scholar
  81. Wiedemann, H.U. 1973. Reconnaissance of the Ciénaga Grande de Santa Marta, Colombia: Physical parameters and geological history. Mitt. Instituto Colombo-Aleman de Investigaciones Cientificas INVEMAR 7: 85–119.Google Scholar
  82. Wosten, J.H.M., P. de Willigen, N.H. Tri, T.V. Lien, and S.V. Smith. 2003. Nutrient dynamics in mangrove areas of the Red River Estuary in Vietnam. Estuarine, Coastal and Shelf Science 57: 65–72.CrossRefGoogle Scholar
  83. Zedler, J.B. 2001. Handbook for restoring tidal wetlands. Boca Raton: CRC.Google Scholar
  84. Zedler, J.B., and J.M. West. 2008. Declining diversity in natural and restored salt marshes: A 30-year study of Tijuana Estuary. Restoration Ecology 16: 249–262.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2010

Authors and Affiliations

  • Victor H. Rivera-Monroy
    • 1
  • Robert R. Twilley
    • 1
  • J. Ernesto Mancera-Pineda
    • 2
    • 3
  • Christopher J. Madden
    • 4
  • Ariel Alcantara-Eguren
    • 5
  • E. Barry Moser
    • 6
  • Bror F. Jonsson
    • 7
  • Edward Castañeda-Moya
    • 1
  • Oscar Casas-Monroy
    • 8
  • Paola Reyes-Forero
    • 8
  • Jorge Restrepo
    • 8
  1. 1.Department of Oceanography and Coastal Sciences, School of the Coast and EnvironmentLouisiana State UniversityBaton RougeUSA
  2. 2.Universidad Nacional de Colombia, Sede CaribeSan Andres IslaColombia
  3. 3.Departamento de BiologíaSede BogotáBogotá, D.C.Colombia
  4. 4.Everglades Research DivisionSouth Florida Water Management DistrictWest Palm BeachUSA
  5. 5.Departamento de Ciencias e IngenieriasUniversidad Iberoamericana—PueblaPueblaMexico
  6. 6.Department of Experimental StatisticsLouisiana State UniversityBaton RougeUSA
  7. 7.Department of Meteorology/OceanographyStockholm UniversityStockholmSweden
  8. 8.Instituto de Investigaciones Marinas y Costeras (INVEMAR)Santa MartaColombia

Personalised recommendations