Estuaries and Coasts

, Volume 33, Issue 1, pp 161–169 | Cite as

Ecosystem Functions of Tidal Fresh, Brackish, and Salt Marshes on the Georgia Coast

  • Kazimierz Więski
  • Hongyu Guo
  • Christopher B. Craft
  • Steven C. Pennings
Article

Abstract

We examined patterns of habitat function (plant species richness), productivity (plant aboveground biomass and total C), and nutrient stocks (N and P in aboveground plant biomass and soil) in tidal marshes of the Satilla, Altamaha, and Ogeechee Estuaries in Georgia, USA. We worked at two sites within each salinity zone (fresh, brackish, and saline) in each estuary, sampling a transect from the creekbank to the marsh platform. In total, 110 plant species were found. Site-scale and plot-scale species richness decreased from fresh to saline sites. Standing crop biomass and total carbon stocks were greatest at brackish sites, followed by freshwater then saline sites. Nitrogen stocks in plants and soil decreased across sites as salinity increased, while phosphorus stocks did not differ between fresh and brackish sites but were lowest at salty sites. These results generally support past speculation about ecosystem change across the estuarine gradient, emphasizing that ecosystem function in tidal wetlands changes sharply across the relatively short horizontal distance of the estuary. Changes in plant distribution patterns driven by global changes such as sea level rise, changing climates, or fresh water withdrawal are likely to have strong impacts on a variety of wetland functions and services.

Keywords

Ecosystem services Salinity Sea level rise Soils Macrophytes Biodiversity Carbon Nitrogen Phosphorus Tidal marshes Wetland functions 

Supplementary material

12237_2009_9230_MOESM1_ESM.doc (51 kb)
Appendix 1Geographic coordinates of field sites (Logger = location of water column salinity measurements with permanently deployed loggers). (DOC 51.0 kb)
12237_2009_9230_MOESM2_ESM.doc (41 kb)
Appendix 2Summary of two-factor analyses of variance for the effects of salinity zone and estuary on plant species richness. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. (DOC 41.0 kb)
12237_2009_9230_MOESM3_ESM.doc (42 kb)
Appendix 3Summary of analyses of variance for the effects of salinity zone and estuary on soil C, N, and P. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. (DOC 42.0 kb)
12237_2009_9230_MOESM4_ESM.doc (45 kb)
Appendix 4Summary of three-factor analyses of variance for the effects of salinity zone, estuary, and elevation on plant height, biomass, C, N, and P. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. (DOC 45.0 kb)

References

  1. Baldwin, A.H. and I.A. Mendelssohn. 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116: 543–555. doi:10.1007/s004420050620.CrossRefGoogle Scholar
  2. Birch, J.B. and J.L. Cooley. 1982. Production and standing crop patterns of giant cutgrass (Zizaniopsis miliacea) in a fresh-water tidal marsh. Oecologia 52: 230–235. doi:10.1007/BF00363842.CrossRefGoogle Scholar
  3. Costanza, R., R. dArge, R. deGroot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. Oneill, J. Paruelo, R.G. Raskin, P. Sutton, and M. vandenBelt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. doi:10.1038/387253a0.CrossRefGoogle Scholar
  4. Costanza, R., O. Perez-Maqueo, M.L. Martinez, P. Sutton, S.J. Anderson, and K. Mulder. 2008. The value of coastal wetlands for hurricane protection. Ambio 37: 241–248. doi:10.1579/0044-7447(2008)37[241:TVOCWF]2.0.CO;2.CrossRefGoogle Scholar
  5. Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52: 1220–1230.Google Scholar
  6. Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S.C. Pennings, H. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78. doi:10.1890/070219.CrossRefGoogle Scholar
  7. Crain, C.M. 2007. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts 30: 26–34.Google Scholar
  8. Crain, C.M., B.R. Silliman, S.L. Bertness, and M.D. Bertness. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549. doi:10.1890/03-0745.CrossRefGoogle Scholar
  9. Dai, T. and R.G. Wiegert. 1996. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77: 276–288. doi:10.2307/2265677.CrossRefGoogle Scholar
  10. Dame, R.F. and P.D. Kenny. 1986. Variability of Spartina alterniflora primary production in the Euhaline North inlet estuary. Marine Ecology Progress Series 32: 71–80. doi:10.3354/meps032071.CrossRefGoogle Scholar
  11. de Groot, R.S., M.A. Wilson, and R.M.J. Boumans. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41: 393–408. doi:10.1016/S0921-8009(02)00089-7.CrossRefGoogle Scholar
  12. Eleuterius, L.N. and F.C. Lanning. 1987. Silica in relation to leaf decomposition of Juncus roemerianus. Journal of Coastal Research 3: 531–534.Google Scholar
  13. Farber, S.C., R. Costanza, and M.A. Wilson. 2002. Economic and ecological concepts for valuing ecosystem services. Ecological Economics 41: 375–392. doi:10.1016/S0921-8009(02)00088-5.CrossRefGoogle Scholar
  14. Frost, J.W., S. Tymeri, and C. Craft. 2009. Effects of nitrogen and phosphorus additions on primary production and invertebrate densities in a Georgia (USA) tidal freshwater marsh. Wetlands 29: 196–203. doi:10.1672/07-79.1.CrossRefGoogle Scholar
  15. Gallagher, J.L., R.J. Reimold, R.A. Linthurst, and W.J. Pfeiffer. 1980. Aerial production, mortality, and mineral accumulation—export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology 61: 303–312. doi:10.2307/1935189.CrossRefGoogle Scholar
  16. Greenberg, R., J.E. Maldonado, S. Droege, and M.V. McDonald. 2006. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates. BioScience 56: 675–685. doi:10.1641/0006-3568(2006)56[675:TMAGPO]2.0.CO;2.CrossRefGoogle Scholar
  17. Hatton, R.S., R.D. Delaune, and W.H. Patrick. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28: 494–502.Google Scholar
  18. Howard, R.J. and I.A. Mendelssohn. 1999. Salinity as a constraint on growth of oligohaline marsh macrophytes. II. Salt pulses and recovery potential. American Journal of Botany 86: 795–806. doi:10.2307/2656701.CrossRefGoogle Scholar
  19. Howard, R.J. and I.A. Mendelssohn. 2000. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses. Aquatic Botany 68: 143–164. doi:10.1016/S0304-3770(00)00108-X.CrossRefGoogle Scholar
  20. Judd, F.W. and R.I. Lonard. 2002. Species richness and diversity of brackish and salt marshes in the Rio Grande Delta. Journal of Coastal Research 18: 751–759.Google Scholar
  21. Judd, F.W. and R.I. Lonard. 2004. Community ecology of freshwater, brackish and salt marshes of the Rio Grande delta. Texas Journal of Science 56: 103–122.Google Scholar
  22. King, G.M., M.J. Klug, R.G. Wiegert, and A.G. Chalmers. 1982. Relation of soil-water movement and sulfide concentration to Spartina alterniflora production in a Georgia Salt-Marsh. Science 218: 61–63. doi:10.1126/science.218.4567.61.CrossRefGoogle Scholar
  23. Koerselman, W. and A.F.M. Meuleman. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–1450. doi:10.2307/2404783.CrossRefGoogle Scholar
  24. Kunza, A.E. and S.C. Pennings. 2008. Patterns of plant diversity in Georgia and Texas salt marshes. Estuaries and Coasts 31: 673–681.CrossRefGoogle Scholar
  25. Maricle, B.R., R.W. Lee, C.E. Hellquist, O. Kiirats, and G.E. Edwards. 2007. Effects of salinity on chlorophyll fluorescence and CO2 fixation in C-4 estuarine grasses. Photosynthetica 45: 433–440. doi:10.1007/s11099-007-0072-7.CrossRefGoogle Scholar
  26. Morse, J.L., J.P. Megonigal, and M.R. Walbridge. 2004. Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry 69: 175–206. doi:10.1023/B:BIOG.0000031077.28527.a2.CrossRefGoogle Scholar
  27. Naidoo, G. and J. Kift. 2006. Responses of the saltmarsh rush Juncus kraussii to salinity and waterlogging. Aquatic Botany 84: 217–225. doi:10.1016/j.aquabot.2005.10.002.CrossRefGoogle Scholar
  28. Odum, W.E., T.J. Smith, J.K. Hoover, and C.C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States East Coast: A community profile. Washington, DC: U.S. Fish and Wildlife Service Report FWS/OBS-83/17.Google Scholar
  29. Odum, W.E. 1998. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.CrossRefGoogle Scholar
  30. Perry, J.E. and R.B. Atkinson. 1997. Plant diversity along a salinity gradient of four marshes on the York and Pamunkey Rivers in Virginia. Castanea 62: 112–118.Google Scholar
  31. Schubauer, J.P. and C.S. Hopkinson. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnology and Oceanography 29: 1052–1065.Google Scholar
  32. Sommers, L.E. and D.W. Nelson. 1972. Determination of total phosphorus in soils: A rapid perchloric acid digestion procedure. Soil Science Society of America Proceedings 36: 902–904.CrossRefGoogle Scholar
  33. Udell, H.F., J. Zarudsky, T.E. Doheny, and P.R. Burkhol. 1969. Productivity and nutrient values of plants growing in salt marshes of the town of Hempstead, Long Island. Bulletin of the Torrey Botanical Club 96: 42–51. doi:10.2307/2484006.CrossRefGoogle Scholar
  34. Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in the Sea—How can it occur? Biogeochemistry 13: 87–115. doi:10.1007/BF00002772.CrossRefGoogle Scholar
  35. Weston, N.B., R.E. Dixon, and S.B. Joye. 2006. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research: Biogeosciences 111: G01009.CrossRefGoogle Scholar
  36. White, D.A., J.M. Trapani, L.B. Thien, and T.E. Weiss. 1978. Productivity and decomposition of dominant salt-marsh plants in Louisiana. Ecology 59: 751–759. doi:10.2307/1938779.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2009

Authors and Affiliations

  • Kazimierz Więski
    • 1
  • Hongyu Guo
    • 1
  • Christopher B. Craft
    • 2
  • Steven C. Pennings
    • 1
  1. 1.Department of Biology and BiochemistryUniversity of HoustonHoustonUSA
  2. 2.School of Public and Environmental AffairsIndiana UniversityBloomingtonUSA

Personalised recommendations