Estuaries and Coasts

, Volume 33, Issue 2, pp 295–310 | Cite as

Helgoland Roads, North Sea: 45 Years of Change

  • Karen Helen WiltshireEmail author
  • Alexandra Kraberg
  • Inka Bartsch
  • Maarten Boersma
  • Heinz-Dieter Franke
  • Jan Freund
  • Christina Gebühr
  • Gunnar Gerdts
  • Karina Stockmann
  • Antje Wichels


The Helgoland Roads time series is one of the richest temporal marine data sets available. Running since 1962, it documents changes for phytoplankton, salinity, Secchi disc depths and macronutrients. Uniquely, the data have been carefully quality controlled and linked to relevant meta-data, and the pelagic time series is further augmented by zooplankton, intertidal macroalgae, macro-zoobenthos and bacterioplankton data. Data analyses have shown changes in hydrography and biota around Helgoland. In the late 1970s, water inflows from the south-west to the German Bight increased with a corresponding increase in flushing rates. Salinity and annual mean temperature have also increased since 1962 and the latter by an average of 1.67°C. This has influenced seasonal phytoplankton growth causing significant shifts in diatom densities and the numbers of large diatoms (e. g. Coscinodiscus wailesii). Changes in zooplankton diversity have included the appearance of the ctenophore Mnemiopsis leidyi. The macroalgal community also showed an increase in green algal and a decrease in brown algal species after 1959. Over 30 benthic macrofaunal species have been newly recorded at Helgoland over the last 20 years, with a distinct shift towards southern species. These detailed data provide the basis for long-term analyses of changes on many trophic levels at Helgoland Roads.


Plankton Macrobenthos Bacteria Nutrients North Sea Climate change 



We wish to thank all the people who have ensured that the Helgoland Roads time series has been kept alive over the past 45 years. These people range from the crews of the research vessels, counting personnel, people who carried out taxonomic investigations and those who did the chemical analyses. We also thank the State Agency for Nature and Environment (LLUR) of Schleswig-Holstein for their continued support. We also thank those who had the foresight to archive the data and set up models.


  1. Alonso, C. and J. Pernthaler. 2006. Concentration-dependent patterns of leucine incorporation by coastal picoplankton. Applied and Environmental Microbiology 72: 2141–2147.CrossRefGoogle Scholar
  2. Bartsch, I. and R. Kuhlenkamp. 2000. The marine macroalgae of Helgoland (North Sea): An annotated list of records between 1845 and 1999. Helgoland Marine Research 54: 160–189.CrossRefGoogle Scholar
  3. Bartsch, I. and R. Kuhlenkamp. 2009. Entwicklung der Makrophyten Vegetation bei Helgoland vor dem Hintergrund der Wasserrahmenrichtlinie. Bundesamt für Seeschiffahrt und Hydrographie (BSH), Hamburg. Meeresumwelt Aktuell: Nord- und Ostsee 1: 1–8.Google Scholar
  4. Bartsch, I., R. Kuhlenkamp, K. Boos, and C. Gehling. 2004. Praxistest für das Makrophyten- und Miesmuschel-Monitoring bei Helgoland im Rahmen der WRRL: Küstengewässertyp Helgoland (N5). Flintbek: LANU.Google Scholar
  5. Bartsch, I. and I. Tittley. 2004. The rocky intertidal biotopes of Helgoland: Present and past. Helgoland Marine Research 58: 289–302.CrossRefGoogle Scholar
  6. Beardsley, C., J. Pernthaler, W. Wosniok, and R. Amann. 2003. Are readily cultured bacteria in coastal North Sea waters suppressed by selective grazing mortality? Applied and Environmental Microbiology 69: 2624–2630.CrossRefGoogle Scholar
  7. Boersma, M., A.M. Malzahn, W. Greve, and J. Javidpour. 2007. The first occurrence of the ctenophore Mnemiopsis leidyi in the North Sea. Helgoland Marine Research 62: 153–155.CrossRefGoogle Scholar
  8. Boos, K., C. Buchholz, F. Buchholz, and L. Gutow. 2004. Projektbericht über die Zusammensetzung des Helgoländer Makrozoobenthos im Vergleich historischer und aktueller Quellen - Klassifizierungsvorschlag nach der WRRL und Empfehlungen zum Monitoring.Google Scholar
  9. Buschbaum, C. 2005. Mass occurrence of an introduced crustacean (Caprella cf. mutica) in the south-eastern North Sea. Helgoland Marine Research 59: 252–253.CrossRefGoogle Scholar
  10. Cook, E.J., M. Jahnke, F. Kerckhof, D. Minchin, M. Faasse, K. Boos, and C. Ashton. 2007. European expansion of the introduced amphipod Caprella mutica Schurin 1935. Aquatic Invasions 2: 411–421.CrossRefGoogle Scholar
  11. Dahlgaard, H. 1995. Transfer of European coastal pollution to the Arctic: Radioactive tracers. Marine Pollution Bulletin 31: 3–7.CrossRefGoogle Scholar
  12. Edwards, M., G. Beaugrand, P.C. Reid, A.A. Rowden, and M.B. Jones. 2002. Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series 239: 1–10.CrossRefGoogle Scholar
  13. Eilers, H., J. Pernthaler, J. Peplies, F.O. Glöckner, G. Gerdts, and R. Amann. 2001. Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Applied and Environmental Microbiology 67: 5134–5142.CrossRefGoogle Scholar
  14. Faasse, M.A. and K.M. Bayha. 2006. The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: An unrecognized invasion? Aquatic Invasions 1: 270–277.CrossRefGoogle Scholar
  15. Feser, F., R. Weisse, and H. von Storch. 2001. Multidecadal atmospheric modelling for Europe yields multi-purpose data. EOS Transactions 82: 305–310.CrossRefGoogle Scholar
  16. Franke, H.-D. and L. Gutow. 2004. Long-term changes in the macrozoobenthos around the rocky island of Helgoland (German Bight, North Sea). Helgoland Marine Research 58: 303–310.CrossRefGoogle Scholar
  17. Franke, H.-D., L. Gutow, and M. Janke. 1999. The recent arrival of the oceanic isopod Idotea metallica Bosc off Helgoland (German Bight, North Sea): An indication of a warming trend in the North Sea? Helgoländer Meeresuntersuchungen 52: 347–357.CrossRefGoogle Scholar
  18. Freund, J., T. Pöschel, and K.H. Wiltshire. 2006. Markovsche Analyse nasser Gemeinschaften. In Irreversible Prozesse und Selbstorganisation, ed. T. Pöschel and L. Schimansky-Geier, 99–110. Berlin: Logos.Google Scholar
  19. Gebühr, C., K. H. Wiltshire, N. Aberle, J. E. E. van Beusekom, and G. Gerdts. 2009. Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea. Aquatic Biology 7: 185–197.Google Scholar
  20. Gerdts, G., A. Wichels, H. Döpke, K.-W. Klings, W. Gunkel, and C. Schutt. 2004. 40-year long-term study of microbial parameters near Helgoland (German Bight, North Sea): Historical view and future perspectives. Helgoland Marine Research 58: 230–242.CrossRefGoogle Scholar
  21. Grasshoff, K. 1976. Methods of seawater analysis. Weinheim: Chemie.Google Scholar
  22. Greve, W., S. Prinage, H. Zidowitz, J. Nast, and F. Reiners. 2005. On the phenology of North Sea ichthyoplankton. ICES Journal of Marine Science 62: 1216–1223.CrossRefGoogle Scholar
  23. Greve, W. and F. Reiners. 1988. Plankton time-space dynamics in the German Bight North Sea: A systems approach. Oecologia 77: 487–496.CrossRefGoogle Scholar
  24. Greve, W., F. Reiners, J. Nast, and S. Hoffmann. 2004. Helgoland Roads meso- and macrozooplankton time series 1974 to 2004: Lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgoland Marine Research 58: 274–288.CrossRefGoogle Scholar
  25. Gutow, L. and H.-D. Franke. 2001. On the current and possible future status of the neustonic isopod Idotea metallica Bosc. in the North Sea: A laboratory study. Journal of Sea Research 45: 37–44.CrossRefGoogle Scholar
  26. Gutow, L., S. Leidenberger, S. Boos, and H.-D. Franke. 2007. Differential life-history responses of two Idotea species (Crustacea: Isopoda) to food limitation. Marine Ecology Progress Series 344: 159–172.CrossRefGoogle Scholar
  27. Hass, H.-C. and I. Bartsch. 2008. Observing the coastal sea. In An atlas of advanced monitoring techniques, ed. R. Doerffer, F. Colijn, and J. van Beusekom, 50–35. Geesthacht: GKSS Research Centre.Google Scholar
  28. Helaouet, P. and G. Beaugrand. 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas. Marine Ecology Progress Series 345: 147–165.CrossRefGoogle Scholar
  29. Hennig, B.D., B.C. Cogan, and I. Bartsch. 2007. Hyperspectral remote sensing and analysis of intertidal zones: A contribution to monitor coastal biodiversity. In Geospatial crossroads @GI Forum, ed. A. Car, G. Griesebner, and J. Strobl, 62–73. Heidelberg: Wichmann.Google Scholar
  30. Hervouet, J. M., and L. van Haren. 1996. TELEMAC2D Version 3.0 Principle Note. Rapport EDF HE-4394052B, Electricité de France, Département Laboratoire National d’Hydraulique, Chatou CEDEX.Google Scholar
  31. Hickel, W. 1972. Kurzzeitige Veränderungen hydrographischer Faktoren und der Sestonkomponenten in driftenden Wassermassen in der Helgoländer Bucht. Helgoländer Wissenschaftliche Meeresuntersuchungen 23: 383–392.CrossRefGoogle Scholar
  32. Hickel, W., P. Mangelsdorf, and J. Berg. 1993. The human impact in the German Bight: Eutrophication during three decades (1962–1991). Helgoländer Wissenschaftliche Meeresuntersuchungen 47: 243–263.Google Scholar
  33. Hoppenrath, M. 2004. A revised checklist of planktonic diatoms and dinoflagellates from Helgoland (North Sea, German Bight). Helgoland Marine Research 58: 243–251.CrossRefGoogle Scholar
  34. Hoppenrath, M., B. Beszteri, G. Drebes, H. Halliger, J.E.E. Beusekom, S. Janisch, and K.H. Wiltshire. 2007. Thalassiosira species (Bacillariophyceae, Thalassiosirales) in the North Sea at Helgoland (German Bight) and Sylt (North Frisian Wadden Sea)—A first approach to assessing diversity. European Journal of Phycology 42: 271–288.CrossRefGoogle Scholar
  35. IPCC. 2001a. Climate change 2001: Impacts, adaptation and vulnerability. In Intergovernmental panel on climate change third assessment report, ed. J.J. McCarthy, O.F. Canziani, N.A. Leary, D.J. Dokken, and K.S. White. Cambridge: Cambridge University Press.Google Scholar
  36. IPCC. 2001b. Climate change 2001: The scientific basis. In Intergovernmental panel on climate change third assessment report, ed. J.T. Houghton, Y. Ding, D.J. Griggs, M. Nogouer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson. Cambridge: Cambridge University Press.Google Scholar
  37. IPCC. 2007. Summary for policymakers. In Climate change 2007: The physical basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.Google Scholar
  38. Jansen, S. 2008. Copepods grazing on Coscinodiscus wailesii—A question of size? Helgoland Marine Research 62: 251–255.CrossRefGoogle Scholar
  39. Johns, D.G., M. Edwards, W. Greve, and A.W.G. John. 2005. Increasing prevalence of the marine cladoceran Penilia avirostris Dana 1852 in the North Sea. Helgoland Marine Research 59: 214–218.CrossRefGoogle Scholar
  40. Kistler, R.E., W. Kalnay, W. Collins, J. Woollen, M. Chelliah, M. Ebisuzaki, M. Kanamitsu, V. Kousky, H. van den Dool, R. Jenne, and M. Fiorino. 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society 82: 247–268.CrossRefGoogle Scholar
  41. Kochmann, J., C. Buschbaum, N. Volkenborn, and K. Reise. 2008. Shift from native mussels to alien oysters: Differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology 364: 1–10.CrossRefGoogle Scholar
  42. Lund, J.W.G., C. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  43. Pehlke, C. and I. Bartsch. 2008. Changes in depth distribution and biomass of sublittoral seaweeds at Helgoland (North Sea) between 1970 and 2005. Climate Research 37: 135–147.CrossRefGoogle Scholar
  44. Pernthaler, A. and J. Pernthaler. 2005. Diurnal variation of cell proliferation in three bacterial taxa from coastal North Sea waters. Applied and Environmental Microbiology 71: 4638–4644.CrossRefGoogle Scholar
  45. Petersen, W.H., H. Wehde, F. Krasemann, F. Colijn, and F. Schroeder. 2008. FerryBox and MERIS—Assessment of coastal and shelf sea ecosystems by combining in situ and remote sensing data. Estuarine and Coastal Shelf Science 77: 296–307.Google Scholar
  46. Plüß, A. 2004. Das Nordseemodell der BAW zur Simulation der Tide in der Deutschen Bucht. Die Küste 67: 83–127.Google Scholar
  47. Polte, P. and C. Buschbaum. 2008. Native pipefish (Entelurus aequoreus) promoted by the introduced seaweed Sargassum muticum in the Northern Wadden Sea, North Sea. Aquatic Biology 3: 11–18.CrossRefGoogle Scholar
  48. Raabe, T. and K.H. Wiltshire. 2008. Quality control and analyses of the long-term nutrient data from Helgoland Roads, North Sea. Journal of Sea Research 61: 3–16.CrossRefGoogle Scholar
  49. Reichert, K. and F. Buchholz. 2006. Changes in the macrozoobenthos of the intertidal zone at Helgoland (German Bight, North Sea): A survey of 1984 repeated in 2002. Helgoland Marine Research 60: 213–223.CrossRefGoogle Scholar
  50. Reichert, K., F. Buchholz, I. Bartsch, T. Kersten, and L. Giménez. 2008. Scale-dependent patterns of variability in species assemblages of the rocky intertidal at Helgoland (German Bight, North Sea). Journal of the Marine Biological Association (United Kingdom) 88: 1319–1329.CrossRefGoogle Scholar
  51. Reid, P.C., M.F. Borges, and E. Svendsen. 2001. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fisheries Research 50: 163–171.CrossRefGoogle Scholar
  52. Reid, P.C., B. Planque, and M. Edwards. 1998. Is observed variability in the long-term results of the Continuous Plankton Recorder survey a response to climate change? Fisheries Oceanography 7: 282–288.CrossRefGoogle Scholar
  53. Roy, S., R.P. Harris, and S.A. Poulet. 1989. Inefficient feeding by Calanus helgolandicus and Temora longicornis on Coscinodiscus wailesii: Quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids. Marine Ecology Progress Series 52: 145–153.CrossRefGoogle Scholar
  54. Sapp, M., G. Gerdts, K.H. Wiltshire, and A. Wichels. 2007. Bacterial community dynamics during winter–spring transition in the North Sea. FEMS Microbiology Ecology 59: 622–637.CrossRefGoogle Scholar
  55. Schlüter, M.H., A. Merico, K.H. Wiltshire, W. Greve, and H. von Storch. 2008. A statistical analysis of climate variability and ecosystem response in the German Bight. Ocean Dynamics 58: 169–186.CrossRefGoogle Scholar
  56. Schwaderer, A.S. 2006. Missing links and experimental evaluation of phytoplankton growth and succession. Ph.D. Thesis University of Kiel. 193 pp.Google Scholar
  57. Siegismund, F. 2001. Long-term changes in the flushing times of the ICES Boxes. Senckenbergia Maritima 31: 151–167.CrossRefGoogle Scholar
  58. Siegismund, F. and C. Schrum. 2001. Decadal changes in the wind forcing over the North Sea. Climate Research 18: 39–45.CrossRefGoogle Scholar
  59. Staley, J.T. and A. Konopka. 1985. Measurements of in situ activities of non- photosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology 39: 321–346.CrossRefGoogle Scholar
  60. Thiemann, S., and I. Bartsch. 2005. Biotope mapping of the intertidal zone of Helogoland (North Sea) using hyperspectral remote sensing images. Proceedings of the Eighth International Conference on Remote Sensing of Marine and Coastal Environments, 1-9. Halifax, Nova ScotiaGoogle Scholar
  61. van Beusekom, J.E.E. 2004. A historic perspective on Wadden Sea eutrophication. Helgoland Marine Research 59: 45–54.CrossRefGoogle Scholar
  62. van Beusekom, J.E.E., S. Weigelt-Krenz, and P. Martens. 2008. Long-term variability of winter nitrate concentrations in the Northern Wadden Sea driven by freshwater discharge, decreasing riverine loads and denitrification. Helgoland Marine Research 62: 49–57.CrossRefGoogle Scholar
  63. von Storch, H. and F.W. Zwiers. 1999. Statistical analysis in climate research. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  64. Ward, J.R. and K.D. Lafferty. 2004. The elusive baseline of marine disease: Are diseases in ecosystems increasing? PLoS Biology 2: 542.Google Scholar
  65. Weijerman, M., H. Lindeboom, and A.F. Zuur. 2005. Regime shifts in marine ecosystems of the North Sea and Wadden Sea. Marine Ecology Progress Series 298: 21–39.CrossRefGoogle Scholar
  66. Wichels, A., S. Biel, S. Gelderblom, H.R. Brinkhoff, T.H. Muyzer, and C. Schütt. 1998. Bacteriophage diversity in the North Sea. Applied and Environmental Microbiology 64: 4128–4133.Google Scholar
  67. Wiltshire, K.H. and C.-D. Dürselen. 2004. Revision and quality analyses of the Helgoland Reede long-term phytoplankton data archive. Helgoland Marine Research 58: 252–268.CrossRefGoogle Scholar
  68. Wiltshire, K.H., A.M. Malzahn, W. Greve, K. Wirtz, S. Janisch, P. Mangelsdorf, B. Manly, and M. Boersma. 2008. Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long-term data at Helgoland Roads. Limnology and Oceanography 53: 1294–1302.Google Scholar
  69. Wiltshire, K.H. and B.F.J. Manly. 2004. The warming trend at Helgoland Roads, North Sea: Phytoplankton response. Helgoland Marine Research 58: 269–273.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2009

Authors and Affiliations

  • Karen Helen Wiltshire
    • 1
    • 2
    Email author
  • Alexandra Kraberg
    • 1
  • Inka Bartsch
    • 3
  • Maarten Boersma
    • 1
  • Heinz-Dieter Franke
    • 1
  • Jan Freund
    • 4
  • Christina Gebühr
    • 1
  • Gunnar Gerdts
    • 1
  • Karina Stockmann
    • 5
  • Antje Wichels
    • 1
  1. 1.Biologische Anstalt HelgolandAlfred Wegener Institute for Polar and Marine ResearchHelgolandGermany
  2. 2.School of Engineering and ScienceJacobs University BremenBremenGermany
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  4. 4.ICBMUniversity of OldenburgOldenburgGermany
  5. 5.Institute for Coastal ResearchGKSS Research CentreGeesthachtGermany

Personalised recommendations