Estuaries and Coasts

, Volume 32, Issue 6, pp 1121–1129 | Cite as

Remote Sensing of Biologically Reworked Sediments: A Laboratory Experiment

  • Annelies De Backer
  • Stefanie Adam
  • Jaak Monbaliu
  • Erik Toorman
  • Magda Vincx
  • Steven Degraer
Article

Abstract

The present study aims to test the application of remote sensing to address the impact of bioturbation on physical sediment properties. Therefore, a laboratory experiment was developed, using microcosms mimicking a marine intertidal water–sediment interface to test the influence of Corophium volutator densities on sediment properties. Three main variables (water content, clay content, and mean grain size) were measured in three treatments (no Corophium, 5,000 Corophium per square meter, and 20,000 Corophium per square meter) after 16 days of bioturbation. Results obtained with conventional—destructive—techniques showed a significant increase of water content and a significant, but small decrease of clay content in the presence of Corophium. The remote sensing technique detected the impact of Corophium on water content as an increase in absorption at 1,450 nm, but was not able to detect the animal impact on clay content. This study demonstrates that remote sensing data could be significantly modified by bioturbation activities and that remote sensing can be applied in the laboratory to address the impact of bioturbation on sediment properties. This possibly opens new perspectives for long-term experiments concerning the role of bioturbation on sedimentary processes.

Keywords

Clay content Remote sensing Grain size Water content Corophium volutator Hyperspectral measurements 

References

  1. Adam, S. 2009. Bio-physical characterization of sediment stability indicators for mudflats using remote sensing. Ph.D. thesis, Katholieke Universiteit Leuven, 162 p + appendices.Google Scholar
  2. Adam, S., I. Vitse, C. Johannsen, and J. Monbaliu. 2006. Sediment type unsupervised classification of the Molenplaat, Westerschelde Estuary, The Netherlands. EARSeL eProceedings 5: 146–160.Google Scholar
  3. Adam, S., J. Monbaliu, and E. Toorman. 2008. Quantification of bio-physical intertidal sediment properties using hyperspectral laboratory and in situ measurements. In 28th EARSeL Symposium and Workshops, Remote Sensing for a Changing Europe, 2–7 June, Istanbul.Google Scholar
  4. Aller, R.C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In Animal–sediment relations, ed. P.L. Mc Call and M.J.S. Tevest, 53–102. New York: Plenum.Google Scholar
  5. Ben-dor, E., K. Patkin, A. Banin, and A. Karnieli. 2002. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—a case study over clayey soils in Israel. International Journal of Remote Sensing 23: 1043–1062.CrossRefGoogle Scholar
  6. Boates, J.S., M. Forbes, M. Zinck, and N. McNeil. 1995. Male amphipods Corophium volutator (Pallas) show flexible behaviour in relation to risk of predation by sandpipers. Ecoscience 2(2): 123–128.Google Scholar
  7. Carrère, V. 2003. Mapping microphytobenthos in the intertidal zone of Northern France using high spectral resolution field and airborne data. Presented at the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, 13–16 May.Google Scholar
  8. Carrère, V., N. Spilmont, and D. Davouli. 2004. Comparison of simple techniques for estimating chlorophyll a concentration in the intertidal zone using high spectral-resolution field-spectrometer data. Marine Ecology Progress Series 274: 31–40.CrossRefGoogle Scholar
  9. Chapman, M.G. and T.J. Tolhurst. 2004. The relationship between invertebrate assemblages and bio-dependent properties of sediment in urbanized temperate mangrove forests. Journal of Experimental Marine Biology and Ecology 304: 51–73.CrossRefGoogle Scholar
  10. Clark, R.N. and T. Roush. 1984. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research 89: 6329–6340.CrossRefGoogle Scholar
  11. Combe, J.-P., P. Launeau, V. Carrère, D. Despan, V. Méléder, L. Barillé, and C. Sotin. 2005. Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images. Remote Sensing of Environment 98: 371–387.CrossRefGoogle Scholar
  12. De Backer, A., E. Van Ael, M. Vincx, and S. Degraer. 2006. The secret life of Corophium volutator, an important bioturbator on mudflats. In VLIZ Young Scientists' Day, Brugge, Belgium, 31 March 2006: Book of Abstracts. VLIZ Special Publication 30, ed. J. Mees, and J. Seys, 27 Oostende: VLIZ (Vlaams Instituut voor de Zee).Google Scholar
  13. de Deckere, E.M.G.T., J. van de Koppel, and C.H.R. Heip. 2000. The influence of Corophium volutator abundance on resuspension. Hydrobiologia 426: 37–42.CrossRefGoogle Scholar
  14. Defew, E.C., T.J. Tolhurst, and D.M. Paterson. 2002. Site-specific features influence sediment stability of intertidal flats. Hydrology and Earth System Sciences 6(5): 971–982.CrossRefGoogle Scholar
  15. Defew, E.C., T.J. Tolhurst, D.M. Paterson, and S.E. Hagerthey. 2003. Can the stability of intertidal sediments be predicted from proxy parameters? An in situ investigation, 61–70. Leamington Spa: Estuarine and Coastal Sciences Association.Google Scholar
  16. Deronde, B., P. Kempeneers, and R.M. Forster. 2006. Imaging spectroscopy as a tool to study sediment characteristics on a tidal sandbank in the Westerschelde. Estuarine, Coastal and Shelf Science 69: 580–590.CrossRefGoogle Scholar
  17. Gerdol, V. and R.G. Hughes. 1994a. Feeding behaviour and diet of Corophium volutator in an estuary in southeastern England. Marine Ecology Progress Series 114: 103–108.CrossRefGoogle Scholar
  18. Gerdol, V. and R.G. Hughes. 1994b. Effect of Corophium volutator on the abundance of benthic diatoms, bacteria and sediment stability in two estuaries in southeastern England. Marine Ecology Progress Series 114: 109–115.CrossRefGoogle Scholar
  19. Grant, J. and G. Daborn. 1994. The effects of bioturbation on sediment transport on an intertidal mudflat. Netherlands Journal of Sea Research 32(1): 63–72.CrossRefGoogle Scholar
  20. Hall, S.J. 1994. Physical disturbance and marine benthic communities: life in unconsolidated sediments. Oceanography and Marine Biology. Annual Review 32: 179–219.Google Scholar
  21. Hunt, G.R. 1977. Spectral signatures of particulate minerals in the visible and near-infrared. Journal of Geophysical Research 95: 12653–12680.Google Scholar
  22. Jones, S.E. and C.F. Jago. 1993. In situ assessment of modification of sediment properties by burrowing invertebrates. Marine Biology 115: 133–142.CrossRefGoogle Scholar
  23. Jones, C.G., J.H. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.CrossRefGoogle Scholar
  24. Kooistra, L., J. Wanders, G.F. Epema, R.S.E.W. Leuven, R. Wehrens, and L.M.C. Buydens. 2003. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Analytica Chimica Acta 484: 189–200.CrossRefGoogle Scholar
  25. Lagacherie, P., F. Baret, J.-B. Feret, J. Madeira Netto, and J.M. Robbez-Masson. 2008. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment 112: 825–835.CrossRefGoogle Scholar
  26. Lillesand, T.M. and R.W. Kiefer. 2000. Remote sensing and image interpretation, vol. 4. New York: Wiley.Google Scholar
  27. Limia, J. and D. Raffaelli. 1997. The effects of burrowing by the amphipod Corophium volutator on the ecology of intertidal sediments. Journal of the Marine Biological Association of the UK 77: 409–423.CrossRefGoogle Scholar
  28. Lohrer, A.M., S.F. Thrush, and M.M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 43: 1092–1095.CrossRefGoogle Scholar
  29. Meadows, P.S. and A. Meadows. 1991. The geotechnical and geochemical implications of bioturbation in marine sedimentary ecosystems. Symposia of the Zoological Society of London 63: 157–181.Google Scholar
  30. Meadows, P.S. and A. Reid. 1966. The behaviour of Corophium volutator (Crustacea: Amphipoda). Journal of Zoology 150: 387–399.CrossRefGoogle Scholar
  31. Meadows, P.S. and J. Tait. 1989. Modification of sediment permeability and shear strength by two burrowing invertebrates. Marine Biology 101: 75–82.CrossRefGoogle Scholar
  32. Meadows, P.S., J. Tait, and S.A. Hussain. 1990. Effects of estuarine infauna on sediment stability and particle sedimentation. Hydrobiologia 190: 263–266.CrossRefGoogle Scholar
  33. Méléder, V., L. Barillé, P. Launeau, V. Carrère, and Y. Rincé. 2003. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sensing of Environment 88: 386–400.CrossRefGoogle Scholar
  34. Mermillod-Blondin, F., R. Rosenberg, F. Francois-Carcaillet, K. Norling, and L. Mauclaire. 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36(3): 271–284.CrossRefGoogle Scholar
  35. Mermillod-Blondin, F., F. François-Carcaillet, and R. Rosenberg. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. Journal of Experimental Marine Biology and Ecology 315(2): 187–209.CrossRefGoogle Scholar
  36. Meysman, F.J., J.J. Middelburg, and C.H. Heip. 2006. Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology and Evolution 21(12): 688–695.CrossRefGoogle Scholar
  37. Murdoch, M.H., F. Bärlocher, and M.L. Laltoo. 1986. Population dynamics and nutrition of Corophium volutator (Pallas) in the Cumberland Basin (Bay of Fundy). Journal of Experimental Marine Biology and Ecology 103: 235–249.CrossRefGoogle Scholar
  38. Murphy, R.J., T.J. Tolhurst, M.G. Chapman, and A.J. Underwood. 2005. Estimation of surface chlorophyll a on an emersed mudflat using field spectrometry: accuracy of ratios and derivative-based approaches. International Journal of Remote Sensing 26: 1835–1859.CrossRefGoogle Scholar
  39. Neema, D.L., A. Shah, and A.N. Patel. 1987. A statistical optical model for light reflection and penetration through sand. International Journal of Remote Sensing 8(8): 1209–1217.CrossRefGoogle Scholar
  40. Pelegri, S.P. and T.H. Blackburn. 1994. Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Marine Biology 121: 253–258.CrossRefGoogle Scholar
  41. Orvain, F., R. Galois, C. Barnard, A. Sylvestre, G. Blanchard, and P.G. Sauriau. 2003. Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm. Microbial Ecology 45(3): 237–251.CrossRefGoogle Scholar
  42. Rainey, M.P., A.N. Tyler, D.J. Gilvear, R.G. Bryant, and P. McDonald. 2003. Mapping intertidal estuarine grain size distributions through airborne remote sensing. Remote Sensing of Environment 86: 480–490.CrossRefGoogle Scholar
  43. Rhoads, D.C. 1974. Organism–sediment relations on the muddy sea floor. Oceanography and Marine Biology. Annual Review 12: 263–300.Google Scholar
  44. Riethmüller, R., J.H.M. Hakvoort, M. Heineke, K. Heymann, H. Kühl, and G. Witte. 1998. Relating erosion thresholds to tidal flat surface colour. In Sedimentary processes in the intertidal zone, eds. K.S. Black, D.M. Paterson, and A. Cramp. Journal of the Geological Society of London (Special Issue) 139: 283–293.Google Scholar
  45. Rowden, A.A., C.F. Jago, and S.E. Jones. 1998. Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment, North Sea. Continental Shelf Research 18: 1347–1363.CrossRefGoogle Scholar
  46. Thomson, A.G., J.A. Eastwood, M.G. Yates, R.M. Fuller, R.A. Wadsworth, and R. Cox. 1998. Airborne remote sensing of intertidal biotopes: BIOTA I. Marine Pollution Bulletin 37: 164–172.CrossRefGoogle Scholar
  47. van der Wal, D. and P.M.J. Herman. 2007. Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sensing of Environment 111: 89–106.CrossRefGoogle Scholar
  48. van der Wal, D., P.M.J. Herman, R.M. Forster, T. Ysebaert, F. Rossi, E. Knaeps, Y.M.G. Plancke, and S.J. Ides. 2008. Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment. Marine Ecology Progress Series 367: 57–72.CrossRefGoogle Scholar
  49. Weidong, L., F. Baret, G. Xingfa, T. Qingxi, Z. Lanfen, and Z. Bing. 2002. Relating soil surface moisture to reflectance. Remote Sensing of Environment 81: 238–246.CrossRefGoogle Scholar
  50. Wiltshire, K.H., S. Harsdorf, B. Smidt, G. Blocker, R. Reuter, and F. Schroeder. 1997. The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe Estuary and the German Bight: a comparison of high-performance liquid chromatography, delayed fluorescence and prompt fluorescence methods. Journal of Experimental Marine Biology and Ecology 222: 113–131.CrossRefGoogle Scholar
  51. Yang, K., J.F. Huntington, P.R.L. Browne, and C. Ma. 2000. An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi Sector of the Wairakei Geothermal System, New Zealand. Geothermics 29: 377–392.CrossRefGoogle Scholar
  52. Yates, M.G., A.R. Jones, S. McGrorty, and J.D. Goss-Custard. 1993. The use of satellite imagery to determine the distribution of intertidal surface sediments of the Wash, England. Estuarine, Coastal and Shelf Science 36: 333–344.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2009

Authors and Affiliations

  • Annelies De Backer
    • 1
    • 4
  • Stefanie Adam
    • 2
  • Jaak Monbaliu
    • 2
  • Erik Toorman
    • 2
  • Magda Vincx
    • 1
  • Steven Degraer
    • 1
    • 3
  1. 1.Marine Biology, Biology DepartmentGhent UniversityGhentBelgium
  2. 2.Hydraulics Laboratory, Department of Civil EngineeringKatholieke Universiteit LeuvenHeverleeBelgium
  3. 3.Marine Ecosystem Management Section, Management Unit of the North Sea Mathematical ModelRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  4. 4.Animal Sciences, FisheriesInstitute for Agricultural and Fisheries ResearchOostendeBelgium

Personalised recommendations