Estuaries and Coasts

, Volume 32, Issue 5, pp 917–925 | Cite as

Salt Spray Induces Osmotic Adjustment and Tissue Rigidity in Smooth Cordgrass, Spartina alterniflora (Loisel.)

  • Brant W. Touchette
  • Kirsten L. Rhodes
  • Gracen A. Smith
  • Mariana Poole
Article

Abstract

Salt spray is one of many abiotic factors that can influence plant productivity and species composition in coastal ecosystems. However, little is known about how marsh plants respond physiologically to the accumulation of sea aerosols on foliar tissues. In this study, experimental microcosms maintained in controlled greenhouse conditions were used to evaluate how low- (1.7 mg dm−2 day−1, weekly averages) and high- (8.6 mg dm−2 day−1) salt-spray loads would influence plant–water relations in Spartina alterniflora (Loisel.). While no differences in plant performance (e.g., changes in biomass and leaf area) were observed between the treatments and control plants, a number of physiological modifications attributed to salt spray were observed. In general, salt-treated plants underwent significant decreases in water potential (Ψ) and osmotic potential (Ψπ) and increases in leaf conductance (g) and bulk modulus of elasticity (ε). It is likely that these physiological responses were used to generate lower Ψ while maintaining osmotic and water homeostasis. That is, by decreasing Ψπ and increasing g and ε, more efficient water flow through the soil–plant–atmosphere continuum can be achieved, thus generating lower Ψ without promoting loss of turgor.

Keywords

Coastal salt marshes Spartina alterniflora Plant–water relations Salt spray Water balance Water potential 

Abbreviations

g

Leaf conductance

PV

Pressure–volume

P

Turgor pressure

Wd

Dry weight

Wf

Fresh weight

Wt

Turgid weight

ε

Bulk modulus of elasticity

θ

Relative water content

θsym

Symplastic water content

Ψ

Water potential

Ψleaf

Leaf water potential

Ψxylem

Xylem water potential

Ψp

Turgor potential

Ψπ

Osmotic potential

Ψπsat

Osmotic potential at full saturation

Ψπtlp

Osmotic potential at turgor loss point

Notes

Acknowledgments

This study was supported by the North Carolina Sea Grant and the Elon University Center for Environmental Studies. We are grateful to S. Russell (Elon University) for providing laboratory assistance and J. Coker (Elon University) for kindly providing the materials.

References

  1. Adams, D.A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44:445–456. doi:10.2307/1932523.CrossRefGoogle Scholar
  2. Ahmad, I. and S.J. Wainwright. 1976. Ecotype differences in leaf surface properties of Agrostis stolonifera from salt marsh, spray zone and inland habitats. New Phytologist 76:361–366. doi:10.1111/j.1469-8137.1976.tb01471.x.CrossRefGoogle Scholar
  3. Barbour, M.G. 1978. Salt spray as a microenvironmental factor in the distribution of beach plants at Point Reyes, California. Oecologia 32:213–224. doi:10.1007/BF00366073.CrossRefGoogle Scholar
  4. Barr, H.D. and P.E. Weatherley. 1962. A re-examination of the relative turgidity technique of estimating water deficit in leaves. Australian Journal of Biological Sciences 15:413–428.Google Scholar
  5. Bolaños, J.A. and D.J. Longstreth. 1984. Salinity effects on water potential components and bulk elastic modulus of Alternanthera philoxeroides (Mart.) Griseb. Plant Physiology 75:281–284. doi:10.1104/pp.75.2.281.CrossRefGoogle Scholar
  6. Boyce, S.G. 1954. The salt spray community. Ecological Monographs 24:29–67. doi:10.2307/1943510.CrossRefGoogle Scholar
  7. Bradley, P.M. and J.T. Morris. 1991. The influence of salinity on the kinetics of NH+ uptake in Spartina alternijora. Oecologia 85:375–380. doi:10.1007/BF00320613.CrossRefGoogle Scholar
  8. Chen, Z., B. Li, Y. Zhong, and J. Chen. 2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528:99–106. doi:10.1007/s10750-004-1888-9.CrossRefGoogle Scholar
  9. Cheplick, G.P. and H. Demetri. 1999. Impact of saltwater spray and sand deposition on the coastal annual Triplasis purpurea (Poaceae). American Journal of Botany 86:703–710. doi:10.2307/2656580.CrossRefGoogle Scholar
  10. Flowers, T.J. and T.D. Colmer. 2008. Salinity tolerance in halophytes. New Phytologist 179:945–963. doi:10.1111/j.1469-8137.2008.02531.x.CrossRefGoogle Scholar
  11. Griffiths, M.E. 2006. Salt spray and edaphic factors maintain dwarf stature and community composition in coastal sandplain heathlands. Plant Ecology 186:69–86. doi:10.1007/s11258-006-9113-8.CrossRefGoogle Scholar
  12. Griffiths, M.E. and C.M. Orians. 2003. Responses of common and successional heathland species to manipulated salt spray and water availability. American Journal of Botany 90:1720–1728. doi:10.3732/ajb.90.12.1720.CrossRefGoogle Scholar
  13. Hester, M.W., I.A. Mendelssohn, and K.L. McKee. 2001. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany 46:277–297. doi:10.1016/S0098-8472(01)00100-9.CrossRefGoogle Scholar
  14. Hwang, Y.-H. and J.T. Morris. 1994. Whole-plant gas exchange responses of Spartina alterniflora (Poaceae) to a range of constant and transient salinities. American Journal of Botany 81:659–665. doi:10.2307/2445644.CrossRefGoogle Scholar
  15. Joly, R.J. 1985. Techniques for determining seedling water status and their effectiveness in assessing stress. In Evaluating seedling quality: principles, procedures, and predictive abilities of major tests, ed. M.L. Duryea, 17–28. Corvallis: Forest Research Laboratory, Oregon State University Press.Google Scholar
  16. Koide, R.T., R.H. Robichaux, S.R. Morse, and C.M. Smith. 1989. Plant water status, hydraulic resistance and capacitance. In Plant physiological ecology: field methods and instrumentation, ed. R.W. Pearcy, J. Ehleringer, H.A. Mooney, and P.W. Rundel, 161–178. New York: Chapman and Hall.Google Scholar
  17. Kramer, P.J. 1983. Water relations of plants. New York: Academic.Google Scholar
  18. Longstreth, D.J. and B.R. Strain. 1977. Effects of salinity and illumination on photosynthesis and water balance of Spartina alterniflora Loisel. Oecologia 31:191–199. doi:10.1007/BF00346920.CrossRefGoogle Scholar
  19. Meinzer, F.C., M.J. Clearwater, and G. Goldstein. 2001. Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany 45:239–262. doi:10.1016/S0098-8472(01)00074-0.CrossRefGoogle Scholar
  20. Mooring, M.T., A.W. Cooper, and E.D. Seneca. 1971. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina. American Journal of Botany 58:48–55. doi:10.2307/2441305.CrossRefGoogle Scholar
  21. Murillo-Amador, B., H.G. Jones, C. Kaya, R.L. Aguilar, J.L. García-Hernández, E. Troyo-Diéguez, N.Y. Ávila-Serrano, and E. Rueda-Puente. 2006. Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany 58:188–196. doi:10.1016/j.envexpbot.2005.08.003.CrossRefGoogle Scholar
  22. Nabil, M. and A. Coudret. 1993. Effects of sodium chloride on growth, tissue elasticity and solute adjustment in two Acacia nilotica subspecies. Physiologia Plantarum 93:217–224. doi:10.1111/j.1399-3054.1995.tb02220.x.CrossRefGoogle Scholar
  23. Oosyting, H.J. and W.D. Billings. 1942. Factors affecting vegitational zoanation on coastal dunes. Ecology 23:131–142. doi:10.2307/1931081.CrossRefGoogle Scholar
  24. Pardossi, A., F. Malorgio, D. Oriolo, R. Gucci, G. Serra, and F. Tognoni. 1998. Water relations and osmotic adjustments in Apium graveolens during long-term NaCl stress and subsequent relief. Physiologia Plantarum 102:369–376. doi:10.1034/j.1399-3054.1998.1020305.x.CrossRefGoogle Scholar
  25. Pearcy, R.W. and S.L. Ustin. 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia 62:68–73. doi:10.1007/BF00377375.CrossRefGoogle Scholar
  26. Pezeshki, S.R. and R.D. DeLaune. 1993. Effects of soil hypoxia and salinity on gas exchange and growth of Spartina patens. Marine Ecology Progress Series 96:75–81. doi:10.3354/meps096075.CrossRefGoogle Scholar
  27. Phleger, C.F. 1971. Effect of salinity on the growth of a salt marsh grass. Ecology 52:908–911. doi:10.2307/1936042.CrossRefGoogle Scholar
  28. Romero-Aranda, R. and J.P. Syvertsen. 1996. The influence of foliar-applied urea nitrogen and saline solutions on net gas exchange of citrus leaves. Journal of the American Society of Horticultural Science 121:501–506.Google Scholar
  29. Rozema, J., Y. Van Manen, H.F. Vugts, and A. Leusink. 1983. Airborne and soilborne salinity and the distribution of coastal and inland water species of the genus Elytrigia. Acta Botanica Neerlandica 32:447–456.Google Scholar
  30. Rozema, J., P. Bijwaard, G. Prast, and R. Broekman. 1985. Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Vegetatio 62:499–521. doi:10.1007/BF00044777.CrossRefGoogle Scholar
  31. Sánchez-Blanco, M.J., P. Rodríguez, E. Olmos, M.A. Morales, and A. Torrecillas. 2004. Plant and Environmental Interactions: Differences in the effects of simulated sea aerosol on water relations, salt content, and leaf ultrastructure on rock-rose plants. Journal of Environmental Quality 33:1369–1375.CrossRefGoogle Scholar
  32. Smart, R.M. and J.W. Barko. 1980. Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora. Ecology 61:630–638. doi:10.2307/1937429.CrossRefGoogle Scholar
  33. Stribling, J.M. and J.C. Cornwell. 2001. Nitrogen, phosphorus, and sulfur dynamics in a low salinity marsh system dominated by Spartina alterniflora. Wetlands 21:629–638. doi:10.1672/0277-5212(2001)021[0629:NPASDI]2.0.CO;2.CrossRefGoogle Scholar
  34. Sykes, M.T. and J.B. Wilson. 1988. An experimental investigation into the response of some New Zealand sand dune species to salt spray. Annals of Botany 62:159–166.Google Scholar
  35. Touchette, B.W. 2006. Salt tolerance in a Juncus roemerianus brackish marsh: Spatial variations in plant water relations. Journal of Experimental Marine Biology and Ecology 337:1–12. doi:10.1016/j.jembe.2006.05.011.CrossRefGoogle Scholar
  36. Touchette, B.W. 2007. Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology 350:194–215. doi:10.1016/j.jembe.2007.05.037.CrossRefGoogle Scholar
  37. Touchette, B.W., L.R. Iannacone, G.E. Turner, and A.R. Frank. 2007. Drought tolerance versus drought avoidance: a comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands 27:656–667. doi:10.1672/0277-5212(2007)27[656:DTVDAA]2.0.CO;2.CrossRefGoogle Scholar
  38. Tyree, M.T. and H.T. Hammel. 1972. The measurements of the turgor pressure and the water relations of plants by the pressure-bomb technique. Journal of Experimental Botany 23:267–282. doi:10.1093/jxb/23.1.267.CrossRefGoogle Scholar
  39. Vasquez, E.A., E.P. Glenn, G.R. Guntenspergen, J.J. Brown, and S.G. Nelson. 2006. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M halotype of Phragmites australis (Poaceae) along a salinity gradient. American Journal of Botany 93:1784–1790. doi:10.3732/ajb.93.12.1784.CrossRefGoogle Scholar
  40. Wilson, J.B. and M.T. Sykes. 1999. Is zoanation on coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes. Ecology Letters 2:233–236. doi:10.1046/j.1461-0248.1999.00084.x.CrossRefGoogle Scholar
  41. Zhu, J.-K. 2001. Plant salt tolerance. Trends in Plant Science 6:66–71. doi:10.1016/S1360-1385(00)01838-0.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2009

Authors and Affiliations

  • Brant W. Touchette
    • 1
    • 2
  • Kirsten L. Rhodes
    • 2
  • Gracen A. Smith
    • 2
  • Mariana Poole
    • 2
  1. 1.Center for Environmental StudiesElon UniversityElonUSA
  2. 2.Department of Biological SciencesElon UniversityElonUSA

Personalised recommendations