Advertisement

Estuaries and Coasts

, Volume 32, Issue 3, pp 551–564 | Cite as

Trace Metals (Cd, Cu, Hg, and Pb) Accumulation Recorded in the Intertidal Mudflat Sediments of Three Coastal Lagoons in the Gulf of California, Mexico

  • A. C. Ruiz-FernándezEmail author
  • M. Frignani
  • C. Hillaire-Marcel
  • B. Ghaleb
  • M. D. Arvizu
  • J. R. Raygoza-Viera
  • F. Páez-Osuna
Article

Abstract

210Pb geochronologies of Cd, Cu, Hg, and Pb fluxes were obtained from the intertidal mudflat sediments of the coastal lagoons Chiricahueto, Estero de Urías, and Ohuira in the Mexican Pacific. The Cu and Hg sediment concentrations at the three lagoons fell within the ranges of 6–76 μg g−1 and 0.1 to 592 ng g−1, respectively; Chiricahueto and Estero de Urías sediments had comparable Cd and Pb concentrations within the ranges of 0.2–2.1 μg g−1 and 10–67 μg g−1, respectively; whereas in Ohuira lagoon, Cd concentrations were lower (0.1–0.5 μg g−1) and Pb concentrations were higher (115–180 μg g−1) than in the other lagoons. The metal fluxes (μg cm−2 y−1) for the three lagoons fell within the ranges of 0.02–0.15 for Cd, 0.7–6.0 for Cu, 0.001–0.045 for Hg, and 0.7–20 for Pb. The Hg pollution in Estero de Urías was attributed to the exhausts of the thermoelectric plant of Mazatlan and the metal enrichment in Chiricahueto and Ohuira was related to the agrochemical wastes from the croplands surrounding these lagoons.

Keywords

210Pb geochronology Coastal lagoons Metal pollution Mudflat sediments Sinaloa State (Mexico) 

Notes

Acknowledgements

This study was funded by projects DGAPA-UNAM IX242504 and IN103605, and CONACYT-SEMARNAT 2002-C01–0161; scholarships to MDA were provided by CONACyT and DGEP-UNAM; mobility grants for MF and ACRF were provided by UNAM-CIC and CONACYT-CNR bilateral program for academic exchange. Thanks are due to H. Bojórquez-Leyva, L.H. Pérez-Bernal, Ramírez-Jáuregui, G. Ramírez-Reséndiz, and V. Montes Montes for their technical assistance. R. Parra and V. Carnero helped in AAS analysis. ACRF and MDA are grateful to M. Preda, S. Corbeil, and J. Hudon for their generosity and constant support during the academic stays at UQAM. This is contribution No. 1619 from the CNR-ISMAR, Bologna, Italy.

References

  1. Acosta-Ruiz, G., and B. Powers. 2003. Preliminary atmospheric emissions inventory of mercury in Mexico. 12th International Emission Inventory Conference Emission Inventories-Applying New Technologies. San Diego, April 29–May 1, 2003.Google Scholar
  2. Aoyama, M., and K. Hirose. 2003. Temporal variation of 137Cs water column inventory in the North Pacific since the 1960s. Journal of Environmental Radioactivity 69(1–2):107–117. doi: 10.1016/S0265-931X(03)00089-4.CrossRefGoogle Scholar
  3. Appleby, P.G. 1998. Dating of sediments and determination of sedimentation rate. Proceedings of a seminar held in Helsinki, 2–3 April 1997.Google Scholar
  4. Appleby, P.G. 2001. Chronostratigraphic techniques in recent sediments. In Tracking environmental change using lake sediments, vol. 1 basin analysis, coring and chronological techniques, eds. W.M. Last, and J.P. Smol, 576. The Netherlands: Kluwer Academic Publishers.Google Scholar
  5. Appleby, P.G. 2004. Environmental change and atmospheric contamination on Svalbard. Journal of Paleolimnology 31:433–443. doi: 10.1023/B:JOPL.0000022545.73163.ed.CrossRefGoogle Scholar
  6. Appleby, P.G. 2008. Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene 18(1):83–93. doi: 10.1177/0959683607085598.CrossRefGoogle Scholar
  7. Appleby, P.G., and F. Oldfield. 1992. Aplication of 210Pb to sedimentation studies. In Uranium series disequilibrium, application to earth, marine and environmental science, eds. M. Ivanovich, and R.S. Harmon, 910. Oxford: Oxford University Press.Google Scholar
  8. Baskaran, M., and A.S. Naidu. 1995. 210Pb derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic. Geochimica et Cosmochimica Acta 59(21):4435–4448. doi: 10.1016/0016-7037(95)00248-X.CrossRefGoogle Scholar
  9. Brack, K., and R.L. Stevens. 2001. Historical pollution trends in a disturbed, estuarine sedimentary environment, SW Sweden. Environmental Geology 40:1017–1029. doi: 10.1007/s002540100294.CrossRefGoogle Scholar
  10. Brunskill, G.J., I. Zagorskis, and J. Pfitzner. 2002. Carbon burial rates in sediments and a carbon mass balance for the Herbert River region of the great barrier reef continental shelf, North Queensland, Australia. Estuarine, Coastal and Shelf Science 54:677–700. doi: 10.1006/ecss.2001.0852.CrossRefGoogle Scholar
  11. Buat-Menard, P. 1979. Influence de la retombée atmosphérique sur la chimie des métaux en trace dans la matière en suspension de l’Atlantique Nord. Thèse Doctorat d’Etat, Paris VII, pp. 434.Google Scholar
  12. Calvert, S.E. 1976. The mineralogy and geochemistry of near-shore sediments. In Chemical oceanography, eds. J.P. Riley, and R. Chester, 410. NewYork: Academic Press.Google Scholar
  13. Carvalho, F.P., S.W. Fowler, F. González-Farias, L.D. Mee, and J.W. Readman. 1996. Agrochemical residues in the Altata-Ensenada del Pabellon coastal lagoon (Sinaloa, Mexico): a need for integrated coastal zone management. International Journal of Environmental Health Research 6:209–220. doi: 10.1080/09603129609356892.CrossRefGoogle Scholar
  14. Cochran, J.K., D.J. Hirschberg, J. Wang, and C. Dere. 1998. Atmospheric deposition of metals to coastal waters (Long Island Sound, New York U.S.A.): evidence from saltmarsh deposits. Estuarine, Coastal and Shelf Science 46:503–522. doi: 10.1006/ecss.1997.0299.CrossRefGoogle Scholar
  15. CONABIO 2004. Comisión Nacional para el Conocimiento Uso de la Biodiversidad. Regionalización. http://www.conabio.gob.mx.
  16. Cook, M.E., and H. Morrow. 1995. Anthropogenic Sources of Cadmium in Canada. National Workshop on Cadmium Transport Into Plants, Ottawa, Ontario, Canada, June 20–21, 1995.Google Scholar
  17. Cundy, A.B., R. Lafite, J.A. Taylor, L. Hopkinson, J. Deloffre, R. Charman, M. Gilpin, K.L. Spencer, P.J. Carey, C.M. Heppell, B. Ouddane, S. De Wever, and A. Tuckett. 2007. Sediment transfer and accumulation in two contrasting salt marsh/mudflat systems: the Seine estuary (France) and the Medway estuary (UK). Hydrobiologia 588:125–134. doi: 10.1007/s10750-007-0657-y.CrossRefGoogle Scholar
  18. DeLaune, R.D., W.H. Patrick Jr., and R.J. Buresh. 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275:532–533. doi: 10.1038/275532a0.CrossRefGoogle Scholar
  19. Dreher, G.B., and L.R. Follmer. 2004. Mercury content of Illinois soils. Water, Air, and Soil Pollution 156:299–315.CrossRefGoogle Scholar
  20. El-Sayed, M.Kh. 1987. Chemistry of modern sediments in a hypersaline lagoon, North of Jeddah, Red Sea. Estuarine, Coastal and Shelf Science 25:467–480. doi: 10.1016/0272-7714(87)90038-2.CrossRefGoogle Scholar
  21. Farmer, J.G., and M.A. Lovell. 1984. Massive diagenetic enhancement of manganese in Loch Lomond sediments. Environmental Technology Letters 5:257–262. doi: 10.1080/09593338409384274.CrossRefGoogle Scholar
  22. Flynn, W.W. 1968. The determination of low levels of polonium-210 in environmental materials. Analytical Chimica Acta 43:221–227. doi: 10.1016/S0003-2670(00)89210-7.CrossRefGoogle Scholar
  23. Fuller, C.C., A. van Geen, M. Baskaran, and R. Anima. 1999. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,240Pu. Marine Chemistry 64:7–27. doi: 10.1016/S0304-4203(98)00081-4.CrossRefGoogle Scholar
  24. Galehouse, J.S. 1971. Sedimentation analysis. In Procedures in sedimentary petrology, ed. R.E. Carver, 69–94. New York: Wiley Interscience.Google Scholar
  25. Galindo-Reyes, J.G. 2000. Condiciones ambientales y de contaminación en los ecosistemas costeros. 159. México: UAS, SEMARNAP.Google Scholar
  26. Gerritse, R.G., P.J. Wallbrink, and A.S. Murria. 1998. Accumulation of phosphorus and heavy metals in the Swan-Canning Estuary, Western Australia. Estuarine Coastal Shelf Science 47:165–170. doi: 10.1006/ecss.1998.0349.CrossRefGoogle Scholar
  27. Glasby, G.P., and P. Szefer. 1997. Marine pollution in Gdansk Bay, Puck Bay and the Vistula lagoon, Poland: an overview. Science of the Total Environment 212(1):49–57. doi: 10.1016/S0048-9697(97)00333-1.CrossRefGoogle Scholar
  28. Gonzalez, J.L., and J.F. Chiffoleau. 1999. Le cadmium: comportement d’un contaminant métallique en estuaire. Rouen, France: Programme scientifique Seine-Aval. doi: 10.1016/j.ecss.2006.11.016.Google Scholar
  29. Gouleau, D., J.M. Jouanneau, O. Weber, and P.G. Sauriau. 2000. Short- and long-term sedimentation on Montportail-Brouage intertidal mudflat, Marennes-Oleron Bay (France). Continental Shelf Research 20(12):1513–1530. doi: 10.1016/S0278-4343(00)00035-2.CrossRefGoogle Scholar
  30. He, Z.L., X.E. Yang, and P.J. Stoffella. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology 19(2–3):125–140. doi: 10.1016/j.jtemb.2005.02.010.CrossRefGoogle Scholar
  31. Heyvaert, A.C., J.E. Reuter, D.G. Slotton, and C.R. Goldman. 2000. Paleolimnological reconstruction of historical atmospheric lead and mercury deposition at Lake Tahoe, California-Nevada. Environmental Science and Technology 34:3588–3597. doi: 10.1021/es991309p.CrossRefGoogle Scholar
  32. INEGI. 2005. Cuaderno estadístico municipal Ahome, Sinaloa. Edición 2006. http://www.inegi.gob.mx.
  33. INEGI. 2006. Anuario Estadístico del Estado de Sinaloa, Edición 2006. http://www.inegi.gob.mx.
  34. Jensen, A., and F. Bro-Rasmussen. 1992. Environmental contamination in Europe. Reviews of Environmental Contamination and Toxicology 125:101–181.Google Scholar
  35. Klinkhammer, G. 1980. Early diagenesis in sediments from the eastern equatorial Pacific. II. Pore water metal results. Earth Planetary Science Letters 49:81–101. doi: 10.1016/0012-821X(80)90151-X.CrossRefGoogle Scholar
  36. Krishnaswami, S., D. Lal, J.M. Martin, and M. Meybeck. 1971. Geochronology of lake sediments. Earth and Planetary Science Letters 11:407–414. doi: 10.1016/0012-821X(71)90202-0.CrossRefGoogle Scholar
  37. Larsen, R.J. 1985. Worldwide deposition of 90Sr through 1983. USA; Department of Energy. New York, USA. Environmental Measurements Laboratory Report EML-444, 159 pp.Google Scholar
  38. Loring, D.H., and R.T.T. Rantala. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews 32:235–283. doi: 10.1016/0012-8252(92)90001-A.CrossRefGoogle Scholar
  39. Lynch, J.C., J.R. Meriwether, B.A. McKee, F. Vera-Herrera, and R.R. Twilley. 1989. Recent accretion in mangrove ecosystems based on 137Cs and 210Pb. Estuaries,12(4):284–299.CrossRefGoogle Scholar
  40. Madsen, A.T., A.S. Murray, T.J. Andersen, and M. Pejrup. 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene—reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242(4):221–233. doi: 10.1016/j.margeo.2007.03.001.CrossRefGoogle Scholar
  41. Morales-Zepeda, F. 2007. El impacto de la biotecnología en la formación de redes institucionales en el sector hortofrutícola de Sinaloa, México. Tesis doctoral. Universidad de Barcelona. http://www.tdx.cbuc.es/TESIS_UB.
  42. NOAA. 1999. Screening quick reference tables (SQuiRTs). National Oceanic and Atmospheric Administration. http://archive.orr.noaa.gov/cpr/sediment/squirt/squirt.html. July 2, 2007.
  43. Otero, N., L. Vitoria, A. Soler, and A. Canals. 2005. Fertiliser characterisation: Major, trace and rare earth elements. Applied Geochemistry 20:1473–1488. doi: 10.1016/j.apgeochem.2005.04.002.CrossRefGoogle Scholar
  44. Ouddane, B., D. Boust, E. Martin, J.C. Fischer, and M. Wartel. 2001. The post-depositional reactivity of iron and manganese in the sediments of a macrotidal estuarine system. Estuaries 24(6B):1015–1028. doi: 10.2307/1353014.CrossRefGoogle Scholar
  45. Pacifico, R., P. Adamo, C. Cremisini, F. Spaziani, and L. Ferrara. 2007. A Geochemical analytical approach for the evaluation of heavy metal distribution in lagoon sediments. Journal of Soils and Sediments 7(5):313–325. doi: 10.1065/jss2007.06.231.CrossRefGoogle Scholar
  46. Paez-Osuna, F., and E.F. Mandelli. 1985. 210Pb in a tropical coastal lagoon sediment core. Estuarine, Coastal and Shelf Science 20:367–374. doi: 10.1016/0272-7714(85)90048-4.CrossRefGoogle Scholar
  47. Pedersen, J.B.T., and J. Bartholdy. 2006. Budgets for fine-grained sediment in the Danish Wadden Sea. Budgets for fine-grained sediment in the Danish Wadden Sea. Marine Geology 235(1–4):101–117. doi: 10.1016/j.margeo.2006.10.008.CrossRefGoogle Scholar
  48. Preiss, N., M.A. Mélières, and M. Pourchet. 1996. A compilation of data on lead-210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. Journal of Geophysical Research 101(22):28847–28862. doi: 10.1029/96JD01836.CrossRefGoogle Scholar
  49. Ridgway, I.M., and N.B. Price. 1987. Geochemical associations and post-depositional mobility of heavy metals in coastal sediments: Loch Etive, Scotland. Marine Chemistry 21:229–248. doi: 10.1016/0304-4203(87)90061-2.CrossRefGoogle Scholar
  50. Ridgway, J., and G. Shimmield. 2002. Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine, Coastal and Shelf Science 55:903–928. doi: 10.1006/ecss.2002.1035.CrossRefGoogle Scholar
  51. Robbins, J.A. 1978. Geochemical and geophysical applications of radioactive lead isotopes. In Biogeochemistry of lead, ed. J.P. Nriagu, 442. Amsterdam: Elsevier Science B.V.Google Scholar
  52. Rose, N.L., C.L. Rose, J.F. Boyle, and P.G. Appleby. 2004. Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard. Journal of Paleolimnology 31:499–513. doi: 10.1023/B:JOPL.0000022548.97476.39.CrossRefGoogle Scholar
  53. Ruiz-Fernández, A.C., C. Hillaire-Marcel, B. Ghaleb, F. Páez-Osuna, and M. Soto-Jiménez. 2001. Isotopic constraints (210Pb, 228Th) on the sedimentary dynamics of contaminated sediments from a subtropical coastal lagoon (NW Mexico). Environmental Geology 41:74–89. doi: 10.1007/s002540100341.CrossRefGoogle Scholar
  54. Ruiz-Fernández, A.C., C. Hillaire-Marcel, B. Ghaleb, M. Soto-Jiménez, and F. Páez-Osuna. 2002. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, Northwestern Mexico: geochemical evidence from organic matter and nutrients. Environmental Pollution 118:365–377. doi: 10.1016/S0269-7491(01)00287-1.CrossRefGoogle Scholar
  55. Ruiz-Fernández, A.C., C. Hillaire-Marcel, F. Páez-Osuna, B. Ghaleb, and M. Soto-Jiménez. 2003. Historical trends of metal pollution recorded in the sediments of Culiacan river estuary, northwestern Mexico. Applied Geochemistry 18(4):577–588. doi: 10.1016/S0883-2927(02)00117-8.CrossRefGoogle Scholar
  56. Ruiz-Fernández, A.C., F. Páez-Osuna, M.L. Machain-Castillo, and E. Arellano-Torres. 2004. 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico. Journal of Environmental Radioactivity 76:161–175. doi: 10.1016/j.jenvrad.2004.03.024.CrossRefGoogle Scholar
  57. Ruiz-Fernández, A.C., M. Frignani, T. Tesi, H. Bojórquez-Leyva, L.G. Bellucci, and F. Páez-Osuna. 2007. Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, Northwestern Mexico. Archives of Environmental Contamination and Toxicology 53:159–167. doi: 10.1007/s00244-006-0122-3.CrossRefGoogle Scholar
  58. Santschi, P.H., B.J. Presley, T.L. Wade, B. Garcia-Romero, and Baskaran. 2001. Historial contamination of PAHs, PCBs, DDTs and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Marine Environmental Research 52(1):51–79.CrossRefGoogle Scholar
  59. Seiter, K., C. Hensen, J. Schröter, and M. Zabel. 2004. Organic carbon content in surface sediments—defining regional provinces. Deep-Sea Research I 51:2001–2026. doi: 10.1016/j.dsr.2004.06.014.CrossRefGoogle Scholar
  60. SEMARNAT. 2004. Evaluación de las externalidades ambientales de la generación termoeléctrica en México. SEMARNAT/CEPAL, Reporte LC/MEX/L.644, 33 pp.Google Scholar
  61. Shaw, T., J.M. Gieskes, and R.A. Jahnke. 1993. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochimica et Cosmochimica Acta 54:1233–1246. doi: 10.1016/0016-7037(90)90149-F.CrossRefGoogle Scholar
  62. Sholkovitz, E.R., J.K. Cochran, and A.E. Carey. 1983. Laboratory studies of the digenesis and mobility of 239, 240Pu and 137Cs in nearshore sediments. Geochimica et Cosmochimica Acta 47:1369–1379. doi: 10.1016/0016-7037(83)90295-8.CrossRefGoogle Scholar
  63. Soto-Jiménez, M.F., and F. Páez-Osuna. 2001a. Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán harbor (SE Gulf of California). Estuarine Coastal Shelf Science 53:259–274. doi: 10.1006/ecss.2000.0814.CrossRefGoogle Scholar
  64. Soto-Jiménez, M.F., and F. Páez-Osuna. 2001b. Cd, Cu, Pb and Zn in lagoonal sediments from Mazatlán harbor (SE Gulf of California): bioavailability and geochemical fractioning. Bulletin of Environmental Contamination and Toxicologyh 66:350–356. doi: 10.1007/s00128-001-0012-3.CrossRefGoogle Scholar
  65. Stanners, D.A., and S.R. Aston. 1981. Factors controlling the interaction of Cs-137 with suspended and deposited sediments in estuarine and coastal environments. Proceedings of an International Symposium on the Impacts of Radionuclide Releases into the Marine Environment. International Atomic Energy Agency and the OECD Nuclear Energy Agency, Vienna, 6–10 October 1980, 131–141.Google Scholar
  66. Steinnes, E. 1995. Mercury. In Heavy metals in soils heavy metals in soils, ed. B.J. Alloway, 2nd ed. 363. Glasgow, United Kingdom: Blackie Academic & Professional.Google Scholar
  67. Stephen-Pichaimani, V., M.P. Jonathan, S. Srinivasalu, N. Rajeshwara-Rao, and S.P. Mohan. 2008. Enrichment of trace metals in surface sediments from the northern part of Point Calimere, SE coast of India. Enviromental Geology 55(8):1811–1819. doi: 10.1007/s00254-007-1132-9.CrossRefGoogle Scholar
  68. Stuardo, J., and M. Villarroel. 1976. Aspectos ecológicos y moluscos en las lagunas costeras de Guerrero, México. Anales de Ciencias del Mar y Limnología, UNAM 3(1):1–180.Google Scholar
  69. Troup, B.N., and O.P. Bricker. 1975. Processes affecting the transport of materials from continents to oceans. In Marine chemistry in the coastal environment, ed. T.M. Church, 133–151. Washington: American Chemical Society.Google Scholar
  70. Turekian, K.K. 1977. The fate of metals in the oceans. Geochimica et Cosmochimica Acta 41(8):1139–1144. doi: 10.1016/0016-7037(77)90109-0.CrossRefGoogle Scholar
  71. Visaggi, C.C. 2002. Tidal channel and mudflat sedimentation processes and rates, lagoon of Venice, Italy. 37th Annual Meeting of the Geological Society of America. Northeastern Section, March 25–27, 2002, Springfield, Massachusetts.Google Scholar
  72. Walling, D.E., and Q. He. 1999. Using fallout lead-210 measurements to estimate soil erosion on cultivated land. Soil Science Society of America Journal 63:1404–1412.Google Scholar
  73. Weis, D.A., J.C. Callaway, and R.M. Gersberg. 2001. Vertical accretion rates and heavy metal chronologies in wetland sediments of the Tijuana Estuary. Estuaries 24(6A):840–850. doi: 10.2307/1353175.CrossRefGoogle Scholar
  74. Weis, J.S., J. Skurnick, and P. Weis. 2004. Studies of a contaminated brackish marsh in the Hackensack Meadowlands of Northeastern New Jersey: benthic communities and metal contamination. Marine Pollution Bulletin 49:1025–1035. doi: 10.1016/j.marpolbul.2004.07.006.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2009

Authors and Affiliations

  • A. C. Ruiz-Fernández
    • 1
    Email author
  • M. Frignani
    • 2
  • C. Hillaire-Marcel
    • 3
  • B. Ghaleb
    • 3
  • M. D. Arvizu
    • 1
  • J. R. Raygoza-Viera
    • 4
  • F. Páez-Osuna
    • 1
  1. 1.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMéxico
  2. 2.Istituto di Scienze Marine, CNRBolognaItaly
  3. 3.Centre de Recherche en Géochimie et en Géodynamique (GEOTOP-UQAM-McGill)Université du Québec à MontrealMontréalCanada
  4. 4.Instituto Tecnológico de MazatlánMazatlánMéxico

Personalised recommendations