Estuaries and Coasts

, Volume 32, Issue 2, pp 390–402 | Cite as

Short- and Long-Term Response of Deteriorating Brackish Marshes and Open-Water Ponds to Sediment Enhancement by Thin-Layer Dredge Disposal

  • Megan K. La Peyre
  • Bryan Gossman
  • Bryan P. Piazza


Artificial sediment enhancement using a thin layer of dredged material has been suggested as a means to increase elevation and create soil conditions conducive to increased marsh structure and function in deteriorating marshes. Using a chronosequence approach, we examined the effects of sediment enhancement in deteriorating marsh and open-water pond habitats located in six brackish marshes. Sediment enhancement of both marsh and interior pond sites had significant, immediate, and long-lasting effects on physical soil properties and nutrient status with increased bulk density and inorganic nitrogen. Vegetative cover and productivity response were minimal for deteriorating vegetated marshes with the short-term response data showing no significant impact of sediment enhancement and long-term trends indicating decreasing productivity over time. In contrast, trajectory models of vegetative cover and productivity in interior pond sites showed increases over time indicating that, for restoration of interior ponds, sediment enhancement may prove valuable. The use of trajectory models emphasizes the need for long-term monitoring to determine restoration success of projects.


Brackish marsh Sediment enhancement Dredged material Restoration Trajectory models 


  1. Barras, J.A., S. Vebille, D. Britsch, S. Hartley, S. Hawes, J. Johnston, P. Kemp, Q. Kinler, A. Martucci, J. Porthouse, D. Reed, K. Roy, S. Sapkota, and, J. Suhayda. 2003. Historical and projected coastal Louisiana land changes: 1978–2050: USGS Open File Report 03-334, 29 pp.Google Scholar
  2. Baumann, R.H., J.W. Day Jr., and C.A. Miller. 1984. Mississippi deltaic wetland survival: Sedimentation versus coastal submergence. Science 224: 1093–1095. doi:10.1126/science.224.4653.1093.CrossRefGoogle Scholar
  3. Belhadjali, K., and J.L.W. Cowan. 2003. Ecological review: Little Lake shoreline protection/dedicated dredging near Round Lake CWPPRA priority project list 11. State no. BA-37. Restoration Technology Section, Coastal Restoration Division, Louisiana Department of Natural Resources, 12 pp.Google Scholar
  4. Belhadjali, K., and K.F. Balkum. 2005. Ecological review: Barataria Basin Landbridge Shoreline Protection Project (BA-27/27b, BA-27c, BA-27d). Restoration Technology Section, Coastal Restoration Division, Louisiana Department of Natural Resources, Baton Rouge, LA.Google Scholar
  5. Busch, J., I.A. Mendelssohn, B. Lorenzen, H. Brix, and S.L. Miao. 2006. A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora 201: 429–439.Google Scholar
  6. Cahoon, D.R., and J.H. Cowan Jr. 1988. Environmental impacts and regulatory policy implications of spray disposal of dredged material in Louisiana wetlands. Coastal Management 16: 341–362.CrossRefGoogle Scholar
  7. Cahoon, D.R., and G.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland. II. Feldspar marker horizon technique. Estuaries 12: 260–268. doi:10.2307/1351905.CrossRefGoogle Scholar
  8. Cahoon, D.R., J.C. Lynch, and R.M. Knaus. 1996. Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research 6: 1025–1027.Google Scholar
  9. Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. A device for high precision measurement of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739. doi:10.1306/020702720734.CrossRefGoogle Scholar
  10. Callaway, J.C., J.A. Nyman, and R.D. DeLaune. 1996. Sediment accretion in coastal wetlands: A review and simulation model of processes. Current Topics in Wetland Biogeochemistry 2: 2–23.Google Scholar
  11. Chen, H.J., I.A. Mendelssohn, B. Lorenzen, H. Brix, and S.L. Miao. 2005. Growth and nutrient responses of Eleocharis cellulose (Cyperaceae) to phosphate level and redox intensity. American Journal of Botany 92: 1457–1466. doi:10.3732/ajb.92.9.1457.CrossRefGoogle Scholar
  12. Craft, C., J. Reader, J.N. Sacco, and S.W. Broome. 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9: 1405–1419. doi:10.1890/1051-0761(1999)009[1405:TFYOED]2.0.CO;2.CrossRefGoogle Scholar
  13. Croft, A.L., L.A. Leonard, T.D. Alphin, L.B. Cahoon, and M.H. Posey. 2006. The effects of thin layer sand renourishment on tidal marsh processes: Masonboro Island, North Carolina. Estuaries and Coasts 29: 737–750.Google Scholar
  14. Curole, G. 2005. Monitoring plan: Little Lake shoreline protection/dedicated dredging near Round Lake. Monitoring Section, Coastal Restoration and Management, Louisiana Department of Natural Resources, 20 pp.Google Scholar
  15. Darby, F.A. 2006. Belowground biomass of Spartina alterniflora: Seasonal variability and response to nutrients. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA.Google Scholar
  16. DeLaune, R.D., R.J. Buresh, and W.H. Patrick Jr. 1979. Relationship of soil properties to standing crop biomass of Spartina alterniflora in a Louisiana marsh. Estuarine and Coastal Marine Science 8: 477–487. doi:10.1016/0302-3524(79)90063-X.CrossRefGoogle Scholar
  17. DeLaune, R.D., S.R. Pezeshki, J.H. Pardue, J.H. Whitcomb, and W.H. Patrick Jr. 1990. Some influences of sediment addition to a deteriorating salt marsh in the Mississippi River deltaic Plain: A pilot study. Journal of Coastal Research 6: 181–188.Google Scholar
  18. DeLaune, R.D., J.A. Nyman, and W.H. Patrick Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.Google Scholar
  19. Dobson, A., A.D. Bradshaw, and A.J.M. Baker. 1997. Hopes for the future: Restoration ecology and conservation biology. Science 277: 515–522. doi:10.1126/science.277.5325.515.CrossRefGoogle Scholar
  20. Folse, T.M., and J.L. West. 2004. A standard operating procedures manual for the Louisiana Department of Natural Resources Coastal Restoration Division: Methods for data collection, quality assurance/quality control, and products. 226. Baton Rouge, LA: Louisiana Department of Natural Resources.Google Scholar
  21. Ford, M.A., D.R. Cahoon, and J.C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering 12: 189–205. doi:10.1016/S0925-8574(98)00061-5.CrossRefGoogle Scholar
  22. Good, R.E., N.F. Good, and B.R. Frasco. 1982. A review of primary production and decomposition dynamics of the belowground marsh component. In Estuarine comparisons, ed. V.S. Kennedy, 139–158. NY: Academic.Google Scholar
  23. Gray, A., C.A. Simenstad, D.L. Bottom, and T.J. Cornwell. 2002. Contrasting functional performance of juvenile salmon habitat in recovering wetlands of the Salmon River Estuary, Oregon U.S.A. Society for Ecological Restoration 10: 514–526.CrossRefGoogle Scholar
  24. Hackney, C.T., and W.J. Cleary. 1987. Saltmarsh loss in southeastern North Carolina lagoons: Importance of sea level rise and inlet dredging. Journal of Coastal Research 3: 93–97.Google Scholar
  25. Haltiner, J., J.B. Zedler, K.E. Boyer, G.D. Williams, and J.C. Callaway. 1997. Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California. Wetlands Ecology and Management 4: 73–91. doi:10.1007/BF01876230.CrossRefGoogle Scholar
  26. Hatton, R.S., R.D. DeLaune, and W.H. Patrick Jr. 1983. Sedimentation, accretion and subsidence in marshes of Barataria Basin Louisiana. Limnology and Oceanography 28: 494–502.CrossRefGoogle Scholar
  27. Hymel, M. 2003. Monitoring plan: Barataria Basin landbridge shoreline protection (phases 1, 2 and 3). Monitoring Section, Coastal Restoration and Management, Louisiana Department of Natural Resources, Baton Rouge, LA, 10 pp.Google Scholar
  28. Kalburtji, K.L., A.P. Mamolos, and S. Kostopoulou. 1997. Nutrient release from decomposing Lotus corniculatus residues in relation to soil pH and nitrogen levels. Agriculture, Ecosystems, and Environment 65: 107–112. doi:10.1016/S0167-8809(97)00064-9.CrossRefGoogle Scholar
  29. Kentula, M.E., R.P. Brooks, S.E. Gwin, C.C. Holland, A.D. Sherman, and J.C. Sifneos. 1992. An approach to improving decision making in wetland restoration and creation. Corvallis, Oregon: U.S. Environmental Protection Agency.Google Scholar
  30. Koning, C.I. 2004. Impacts of small amounts of sandy sediment on wetland soils and vegetation: Results from field and greenhouse studies. Wetlands 24: 295–308. doi:10.1672/0277-5212(2004)024[0295:IOSAOS]2.0.CO;2.CrossRefGoogle Scholar
  31. Laursen, K.R. 2004. The effects of nutrient enrichment on the decomposition of belowground organic matter in a Sagittaria lancifolia dominated oligohaline marsh. MS Thesis, Louisiana State University, Baton Rouge, LA.Google Scholar
  32. Louisiana Department of Natural Resources, Coastal Restoration Division. 2000. Closure report, initial funding allocation, DNR dedicated dredging program (LA-1). 8. Baton Rouge, LA: Louisiana Department of Natural Resources.Google Scholar
  33. McKee, K.L., and I.A. Mendelssohn. 1988. Spartina alterniflora dieback in Louisiana: Time-course investigation of soil water-logging effects. Journal of Ecology 76: 509–521. doi:10.2307/2260609.CrossRefGoogle Scholar
  34. Mendelssohn, I.A., and M.G. Slocum. 2004. Relationship between soil cellulose decomposition and oil contamination after an oil spill at Swanson Creek, Maryland. Marine Pollution Bulletin 48: 359–370. doi:10.1016/j.marpolbul.2003.08.015.CrossRefGoogle Scholar
  35. Morgan, P.A., and F.T. Short. 2002. Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire, U.S.A. Restoration Ecology 10: 461–473. doi:10.1046/j.1526-100X.2002.01037.x.CrossRefGoogle Scholar
  36. Nyman, J.A., and R.D. DeLaune. 1991. CO2 emission and soil Eh responses to different hydrological conditions in fresh, brackish, and saline marsh soils. Limnography and Oceanography 36: 1406–1414.Google Scholar
  37. Nyman, J.A., R.D. DeLaune, and W.H. Patrick Jr. 1990. Wetland soil formation in the rapidly subsiding Mississippi River deltaic plain: Mineral and organic matter relationships. Estuarine Coastal and Shelf Science 31: 57–69. doi:10.1016/0272-7714(90)90028-P.CrossRefGoogle Scholar
  38. Nyman, J.A., R.D. DeLaune, S.R. Pezeshki, and W.H. Patrick Jr. 1995. Organic matter fluxes and marsh stability in a rapidly submerging estuarine marsh. Estuaries 18: 207–218. doi:10.2307/1352631.CrossRefGoogle Scholar
  39. Nyman, J.A., R.J. Walters, R.D. DeLaune, and W.H. Patrick Jr. 2006. Marsh vertical accretion via vegetative growth. Estuarine Coastal and Shelf Science 69: 370–380. doi:10.1016/j.ecss.2006.05.041.CrossRefGoogle Scholar
  40. Odum, E.P. 1969. The strategy of ecosystem development. Science 164: 262–270. doi:10.1126/science.164.3877.262.CrossRefGoogle Scholar
  41. Penland, S., and K.E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research 6: 323–342.Google Scholar
  42. Pezeshki, S.R., and R.D. DeLaune. 1990. Influence of sediment oxidation–reduction potential on root elongation in Spartina patens. Acta OEcologica 11: 377–383.Google Scholar
  43. Reimold, R.J., Hardisky, M.A., and Adams, P.C. 1978. The effects of smothering a Spartina alterniflora salt marsh with dredged material. US Army Corps of Engineers, Washington, DC. Technical Report D-78-38.Google Scholar
  44. Rybczyk, J.M., G. Garson, and J.W. Day Jr. 1996. Nutrient enrichment and decomposition in wetland ecosystems: Models, analyses, and effects. Current Topics in Wetland biogeochemistry 2: 52–72.Google Scholar
  45. Simenstad, C.A., and R.M. Thom. 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland. Ecological Applications 61: 38–56. doi:10.2307/2269551.CrossRefGoogle Scholar
  46. Slocum, M.G., I.A. Mendelssohn, and N.L. Kuhn. 2005. Effects of sediment slurry enrichment on salt marsh rehabilitation: Plant and soil responses over seven years. Estuaries 28: 519–528. doi:10.1007/BF02696063.CrossRefGoogle Scholar
  47. Stevenson, J.C., L.G. Ward, and M.S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise. In Estuarine variability, ed. D.A. Wolfe, 1241–259. New York: Academic.Google Scholar
  48. Turner, R.E., E.M. Swenson, and C.S. Milan. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and controversies in tidal marsh ecology, eds. M.P. Weinstein, and D.A. Kreeger, 583–596. The Netherlands: Kluwer.Google Scholar
  49. Turner, R.E., E.M. Swenson, C.S. Milan, J.M. Lee, and T.A. Oswald. 2004. Below-ground biomass in healthy and impaired salt marshes. Ecological Research 19: 29–35. doi:10.1111/j.1440-1703.2003.00610.x.CrossRefGoogle Scholar
  50. Valiela, I., J.M. Teal, and N.Y. Persson. 1976. Production dynamics of experimentally enriched salt marsh vegetation: Belowground biomass. Limnology and Oceanography 21: 245–252.Google Scholar
  51. Valiela, I., J.M. Teal, S.D. Allen, R. Van Etten, D. Goehringer, and S. Volkmann. 1985. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89: 29–54. doi:10.1016/0022-0981(85)90080-2.CrossRefGoogle Scholar
  52. Wilber, P. 1992. Case studies of the thin-layer disposal of dredged material—Gull Rock, North Carolina. Environmental Effects of Dredging D-92-3.Google Scholar

Copyright information

© U.S. Government 2008

Authors and Affiliations

  • Megan K. La Peyre
    • 1
  • Bryan Gossman
    • 2
    • 3
  • Bryan P. Piazza
    • 2
  1. 1.U.S. Geological Survey, Louisiana State University Agricultural Center, Louisiana Fish and Wildlife Cooperative Research Unit, School of Renewable Natural ResourcesBaton RougeUSA
  2. 2.Louisiana State University Agricultural Center, School of Renewable Natural ResourcesBaton RougeUSA
  3. 3.Louisiana Department of Natural Resources, Office of Coastal Restoration and ManagementNew OrleansUSA

Personalised recommendations