Advertisement

Estuaries and Coasts

, Volume 32, Issue 1, pp 188–201 | Cite as

Phosphorus Availability and Salinity Control Productivity and Demography of the Seagrass Thalassia testudinum in Florida Bay

  • Darrell A. Herbert
  • James W. Fourqurean
Article

Abstract

Biomass, net primary productivity (NPP), foliar elemental content, and demography of Thalassia testudinum were monitored in populations from five sites across Florida Bay beginning in January 2001. Sites were selected to take advantage of the spatial variability in phosphorus (P) availability and salinity climates across the bay. Aboveground biomass and NPP of T. testudinum were determined five to six times annually. Short-shoot demography, belowground biomass, and belowground NPP were assessed from a single destructive harvest at each site and short-shoot cohorts were estimated from leaf scar counts multiplied by site-specific leaf production rates. Biomass, relative growth rate (RGR), and overall NPP were positively correlated with P availability. Additionally, a positive correlation between P availability and the ratio of photosynthetic to non-photosynthetic biomass suggests that T. testudinum increases allocation to aboveground biomass as P availability increases. Population turnover increased with P availability, evident in positive correlations of recruitment and mortality rates with P availability. Departures from seasonally modeled estimates of RGR were found to be influenced by salinity, which depressed RGR when below 20 psu or above 40 psu. Freshwater management in the headwaters of Florida Bay will alter salinity and nutrient climates. It is becoming clear that such changes will affect T. testudinum, with likely feedbacks on ecosystem structure, function, and habitat quality.

Keywords

Seagrass Productivity Demography Phosphorus Salinity Long-term monitoring 

Notes

Acknowledgements

Much of the field data were collected by Rebecca Bernard, Dorothy Byron, Virginia Cornett, Kevin Cunniff, and Bryan Dewsbury. Susie Escorcia and Pamela Parker oversaw the laboratory analyses. We thank Marguerite Koch and anonymous reviewers for thoughtful comments. This work was supported by the National Science Foundation as part of the Florida Coastal Everglades Long-Term Ecological Research program (Cooperative Agreements #DBI-0620409 and #DEB-9910514) as well as a cooperative agreement with Everglades National Park (J5284-07-0029) and a grant from Florida Sea Grant (UF08029). This is contribution no. 408 of the Southeast Environmental Research Center at Florida International University.

References

  1. Alcoverro, T., E. Cerbian, and E. Ballesteros. 2001. The photosynthetic capacity of the seagrass Posidonia oceanica: influence of nitrogen and light. Journal of Experimental Marine Biology and Ecology 261: 107–120.CrossRefGoogle Scholar
  2. Armitage, A.R., T.A. Frankovitch, K.L. Heck Jr., and J.W. Fourqurean. 2005. Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries 28: 422–434. doi: 10.1007/BF02693924.CrossRefGoogle Scholar
  3. Bittaker, H.F., and R.L. Iverson. 1976. Thalassia testudinum productivity: a field comparison of measurement methods. Marine Biology 37: 39–46. doi: 10.1007/BF00386777.CrossRefGoogle Scholar
  4. Brewster-Wingard, G.L., and S.E. Ishman. 1999. Historical trends in salinity and substrate in central Florida Bay: a paleoecological reconstruction using modern analogue data. Estuaries 22: 369–383. doi: 10.2307/1353205.CrossRefGoogle Scholar
  5. Brouns, J.J.W.M. 1985. The plastochrone interval method for the study of the productivity of seagrasses; possibilities and limitations. Aquatic Botany 21: 71–88. doi: 10.1016/0304-3770(85)90097-X.CrossRefGoogle Scholar
  6. Butler, M.J., T.W. Dolan IV, J.H. Hunt III, K.A. Rose, and W.F. Herrnkind. 2005. Recruitment in degraded marine habitats: a spatially explicit, individual-based model for spiny lobster. Ecological Applications 15: 902–918. doi: 10.1890/04-1081.CrossRefGoogle Scholar
  7. Calvo, S., G. Lovison, M. Pirrotta, G. Di Maida, A. Tomasello, and M. Sciandra. 2006. Modelling the relationship between sexual reproduction and rhizome growth in Posidonia oceanica (L.) Delile. Marine Ecology—An Evolutionary Perspective 27: 361–371.Google Scholar
  8. Caswell, H. 1989. Matrix population models. Sunderland: Sinauer.Google Scholar
  9. Chabot, B.F., and D.J. Hicks. 1982. The ecology of leaf life spans. Annual Review of Ecology and Systematics 13: 229–259. doi: 10.1146/annurev.es.13.110182.001305.CrossRefGoogle Scholar
  10. Chapin, F.S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260. doi: 10.1146/annurev.es.11.110180.001313.CrossRefGoogle Scholar
  11. Collier, C.J., P.S. Lavery, P.J. Ralph, and R.J. Masini. 2008. Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Marine Ecology Progress Series 353: 65–79. doi: 10.3354/meps07171.CrossRefGoogle Scholar
  12. Duarte, C.M., N. Marba, N. Agawin, J. Cebrian, S. Enriquez, M.D. Fortes, M.E. Gallegos, M. Merino, B. Olesen, K. Sand-Jensen, J. Uri, and J. Vermaat. 1994. Reconstruction of seagrass dynamics: age determinations and associated tools for the seagrass ecologist. Marine Ecology. Progress Series 107: 195–209. doi: 10.3354/meps107195.CrossRefGoogle Scholar
  13. Duarte, C.M., M. Merino, N.S.R. Agawin, J. Uri, M.D. Fortes, M.E. Gallegos, N. Marba, and M.A. Hemminga. 1998. Root production and belowground seagrass biomass. Marine Ecology Progress Series 171: 97–108.CrossRefGoogle Scholar
  14. Ebert, T.A., S.L. Williams, and P.J. Ewanchuk. 2002. Mortality estimates from age distributions: critique of a method used to study age distributions. Limnology and Oceanography 47: 600–603.Google Scholar
  15. Ferguson, C. 2008. Nutrient pollution and the molluscan death record: the use of mollusk shells to diagnose environmental change. Journal of Coastal Research 24: 250–259. doi: 10.2112/06-0650.1.CrossRefGoogle Scholar
  16. Fourqurean, J.W., and M.B. Robblee. 1999. Florida Bay: a history of recent ecological changes. Estuaries 22: 345–357. doi: 10.2307/1353203.CrossRefGoogle Scholar
  17. Fourqurean, J.W., and J.C. Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Marine Ecology Progress Series 69: 161–170. doi: 10.3354/meps069161.CrossRefGoogle Scholar
  18. Fourqurean, J.W., and J.C. Zieman. 2002. Nutrient control of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61: 229–245. doi: 10.1023/A:1020293503405.CrossRefGoogle Scholar
  19. Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37: 162–171.CrossRefGoogle Scholar
  20. Fourqurean, J.W., G.V.N. Powell, W.J. Kenworthy, and J.C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72: 349–358. doi: 10.2307/3546120.CrossRefGoogle Scholar
  21. Fourqurean, J.W., A.W. Willsie, C.D. Rose, and L.M. Rutten. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Marine Biology 138: 341–354. doi: 10.1007/s002270000448.CrossRefGoogle Scholar
  22. Fourqurean, J.W., N. Marbà, and C.M. Duarte. 2003a. Elucidating seagrass population dynamics: theory, constraints and practice. Limnology and Oceanography 48: 2070–2074.Google Scholar
  23. Fourqurean, J.W., J.N. Boyer, M.J. Durako, L.N. Hefty, and B.J. Peterson. 2003b. Forecasting responses of seagrass distribution to changing water quality using monitoring data. Ecological Applications 13: 474–489. doi: 10.1890/1051-0761(2003)013[0474:FROSDT]2.0.CO;2.CrossRefGoogle Scholar
  24. Frankovich, T.A., and J.W. Fourqurean. 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Marine Ecology Progress Series 159: 37–50. doi: 10.3354/meps159037.CrossRefGoogle Scholar
  25. Gil, M., A.R. Armitage, and J.W. Fourqurean. 2006. Nutrient impacts on epifaunal density and species composition of a subtropical seagrass bed. Hydrobiologia 568: 437–447. doi: 10.1007/s10750-006-0147-7.CrossRefGoogle Scholar
  26. Gower, S.T. 1987. Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica 19: 171–175. doi: 10.2307/2388741.CrossRefGoogle Scholar
  27. Guidetti, P., M.C. Buia, and L. Mazzella. 2000. The use of lepidochronology as a tool of analysis of dynamic features in the seagrass Posidonia oceanica of the Adriatic Sea. Botanica Marina 43: 1–9. doi: 10.1515/BOT.2000.001.CrossRefGoogle Scholar
  28. Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. UK: Cambridge University Press.Google Scholar
  29. Herbert, D.A., and J.W. Fourqurean. 2008. Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems 11: 688–700.CrossRefGoogle Scholar
  30. Herbert, D.A., and J.H. Fownes. 1999. Forest productivity and efficiency of resource use across a chronosequence of tropical montane soils. Ecosystems 2: 242–254. doi: 10.1007/s100219900072.CrossRefGoogle Scholar
  31. Herbert, D.A., E.B. Rastetter, L. Gough, and G.R. Shaver. 2004. Species diversity across nutrient gradients: an analysis of resource competition in model ecosystems. Ecosystems 7: 296–310. doi: 10.1007/s10021-003-0233-x.CrossRefGoogle Scholar
  32. Jensen, S.L., B.D. Robbins, and S.S. Bell. 1997. On the use of the reconstructive technique: criticisms, comments and questions. Marine Ecology Progress Series 146: 305–309. doi: 10.3354/meps146305.CrossRefGoogle Scholar
  33. Kahn, A.E., and M.J. Durako. 2006. Thalassia testudinum seedling responses to changes in salinity and nitrogen levels. Journal of Experimental Marine Biology and Ecology 335: 1–12. doi: 10.1016/j.jembe.2006.02.011.CrossRefGoogle Scholar
  34. Kaldy, J.E., and K.H. Dunton. 2000. Above- and below-ground production, biomass, and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Marine Ecology Progress Series 193: 271–283. doi: 10.3354/meps193271.CrossRefGoogle Scholar
  35. Kaldy, J.E., N. Fowler, and K.H. Dunton. 1999. Critical assessment of Thalassia testudinum (turtle grass) aging techniques: implications for demographic inferences. Marine Ecology Progress Series 181: 279–288. doi: 10.3354/meps181279.CrossRefGoogle Scholar
  36. Koch, M.S., S.A. Schopmeyer, C. Kyhn-Hansen, C.J. Madden, and J.S. Peters. 2007a. Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany 86: 14–24. doi: 10.1016/j.aquabot.2006.08.003.CrossRefGoogle Scholar
  37. Koch, M.S., S.A. Schopmeyer, M. Holmer, C.J. Madden, and C. Kyhn-Hansen. 2007b. Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquatic Botany 87: 104–110. doi: 10.1016/j.aquabot.2007.03.004.CrossRefGoogle Scholar
  38. Light, S.S., and J.W. Dineen. 1994. Water control in the Everglades: a historical perspective. In Everglades: the ecosystem and its restoration, eds. S.M. Davis, and J.C. Ogden, 47–84. Delray Beach: St. Lucie.Google Scholar
  39. Lirman, D., and W.P. Cropper Jr. 2003. The influence of salinity on seagrass growth, survivorship, and distribution within Biscayne Bay, Florida: field, experimental, and modeling studies. Estuaries 26: 131–141. doi: 10.1007/BF02691700.CrossRefGoogle Scholar
  40. McIvor, C.C., J.A. Ley, and R.D. Bjork. 1994. Changes in the freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: a review. In Everglades: the ecosystem and its restoration, eds. S.M. Davis, and J.C. Ogden, 47–84. Delray Beach: St. Lucie.Google Scholar
  41. Nance, J.M. 1994. A biological review of the Tortugas pink shrimp fishery through December 1993. Galveston: Galveston Laboratory, Southeast Fisheries Science Center, National Marine Fisheries Service.Google Scholar
  42. Patriquin, D. 1973. Estimation of growth rate, production and age of the marine angiosperm Thalassia testudinum König. Caribbean Journal of Science 13: 111–123.Google Scholar
  43. Pergent-Martini, C., and G. Pergent. 2004. Lepidochronological analysis in the Mediterranean seagrass Posidonia oceanica state-of-the-art and future-developments. Oceanologica Acta 47: 673–681.Google Scholar
  44. Peterson, B.J., and J.W. Fourqurean. 2001. Large-scale patterns in seagrass (Thalassia testudinum) demographics in south Florida. Limnology and Oceanography 46: 1077–1090.CrossRefGoogle Scholar
  45. Powell, G.V.N., W.J. Kenworthy, and J.W. Fourqurean. 1989. Experimental evidence for nutrient limitation os seagrass growth in a tropical estuary with restricted circulation. Bulletin of Marine Science 44: 324–340.Google Scholar
  46. Powell, G.V.N., J.W. Fourqurean, W.J. Kenworthy, and J.C. Zieman. 1991. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuarine, Coastal, and Shelf Science 32: 567–579. doi: 10.1016/0272-7714(91)90075-M.CrossRefGoogle Scholar
  47. Price, R.M., P.K. Swart, and J.W. Fourqurean. 2006. Coastal groundwater discharge—an additional source pf phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569: 23–36. doi: 10.1007/s10750-006-0120-5.CrossRefGoogle Scholar
  48. Quammen, M.L., and C.P. Onuf. 1993. Laguna Madre: seagrass changes continue decades after salinity reduction. Estuaries 16: 302–310. doi: 10.2307/1352503.CrossRefGoogle Scholar
  49. Reich, P.B., C. Uhl, M.B. Walters, and D.S. Ellsworth. 1991. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86: 16–24. doi: 10.1007/BF00317383.CrossRefGoogle Scholar
  50. Rudnick, D.T., Z. Chen, D.L. Childers, J.N. Boyer, and T.D. Fontaine III. 1999. Phosphorus and nitrogen inputs to Florida Bay: the importance of the everglades watershed. Estuaries 22: 398–416. doi: 10.2307/1353207.CrossRefGoogle Scholar
  51. Ruiz-Halpern, S., S.A. Macko, and J.W. Fourqurean. 2008. The effects of manipulation of sedimentary iron and organic matter on sediment biogeochemistry and seagrasses in a subtropical carbonate environment. Biogeochemistry 87: 113–126. doi: 10.1007/s10533-007-9162-7.CrossRefGoogle Scholar
  52. Schmidt, T.W. 1979. Ecological study of fishes and water quality in Florida Bay, Everglades National Park, Florida. Homestead: South Florida Research Center, Everglades National Park, RSP-EVER N-36.Google Scholar
  53. Schomer, S.N., and R.D. Drew. 1982. An ecological characterization of the lower Everglades, Florida Bay and the Florida Keys. Washington DC: US Fish and Wildlife Service, Office of Biological Services, FWS/OBS-82/58.1.Google Scholar
  54. Smith, T.J., H.H. Hudson, M.B. Robblee, G.V.N. Powell, and P.J. Isdale. 1989. Freshwater flow from the Everglades to Florida Bay: a historical reconstruction based on fluorescent banding in the coral Solenastrea bournoni. Bulletin of Marine Science 44: 274–282.Google Scholar
  55. Swart, P.K., G.F. Healy, R.E. Dodge, P. Kramer, J.H. Hudson, R.B. Halley, and M.B. Robblee. 1996. The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence. Paleogeography, Paleoclimatology, Paleoecology 123: 219–237. doi: 10.1016/0031-0182(95)00078-X.CrossRefGoogle Scholar
  56. Thayer, G.W., and A.J. Chester. 1989. Distribution and abundance of fishes among basin and channel habitats of Florida Bay. Bulletin of Marine Science 44: 200–219.Google Scholar
  57. Thayer, G.W., A.B. Powell, and D.E. Hoss. 1999. Composition of larval, juvenile, and small adult fishes relative to changes in environmental conditions in Florida Bay. Estuaries 22: 518–533. doi: 10.2307/1353215.CrossRefGoogle Scholar
  58. Tilman, D. 1988. Plant strategies and the dynamic structure of plant communities. Princeton: Princeton University Press.Google Scholar
  59. Zieman, J.C. 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum König. Aquaculture 4: 139–143. doi: 10.1016/0044-8486(74)90029-5.CrossRefGoogle Scholar
  60. Zieman, J.C. 1982. The ecology of the seagrasses of south Florida: a community profile. Washington D.C.: Fish and Wildlife Service, FWS/OBS-82/25.Google Scholar
  61. Zieman, J.C., J.W. Fourqurean, and R.L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Science 44: 292–311.Google Scholar
  62. Zieman, J.C., J.W. Fourqurean, and T.A. Frankovich. 1999. Seagrass die off in Florida Bay (USA): long-term trends in abundance and growth of turtle grass, Thalassia testudinum. Estuaries 22: 460–470. doi: 10.2307/1353211.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2008

Authors and Affiliations

  1. 1.Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  2. 2.Fairchild Tropical Botanic GardenCoral GablesUSA

Personalised recommendations