Estuaries and Coasts

, Volume 32, Issue 2, pp 276–286 | Cite as

Bacterial Community Dynamics in a Seagrass (Posidonia oceanica) Meadow Sediment

  • Micaela García-Martínez
  • Arantxa López-López
  • María Ll. Calleja
  • Núria Marbà
  • Carlos M. Duarte
Article

Abstract

Some traits of the bacterial community dynamics associated to the rhizosphere of the Mediterranean seagrass Posidonia oceanica, growing in carbonate sediments, were analyzed during a 2-year period in an enclosed bay of the Balearic Islands. The diversity of the bacterial community was studied by the construction of 16S rDNA clone library. For testing temporal and vertical differences in the abundance of total cells and active Bacteria, we used 4′,6-diamidino-2-phenylindole (DAPI) staining and fluorescence in situ hybridization (FISH). Moreover, some relevant groups of sulfate-reducing bacteria (SRB) were occasionally assessed by FISH. Despite the observed decrease in the total DAPI-stained cells, bacterial counts, and sulfate reduction rates throughout the sampling time, we found an increase in both the pore-water sulfide concentration and the proportion of SRB. Overall, the results revealed a very high bacterial diversity and indicated shifts in bacterial dynamics that could not be related to temperature-dependent factors, suggesting a link between the documented regression of the seagrass meadow and the decline of the microbial community, likely due to large organic matter inputs to the bay.

Keywords

Bacterial dynamics Carbonate sediment Posidonia oceanica Sulfate-reducing bacteria FISH 

Notes

Acknowledgements

This study was funded by the projects: VEM2003-200075-C02-01 (Spanish Ministry of Education and Research) to R. Rosselló-Mora, 055/2002 (Spanish Ministry of Environment) to NM, and a project from the Fundación BBVA to CM. Duarte. We thank to R. Santiago, R. Martínez, and E. Álvarez for field assistance and to R. Rosselló-Mora for economical, logistical, and scientific support. We are indebted with members of the laboratory of Microbiology of the Balearic Islands University for logistical and scientific support, to the staff of Cabrera Archipiélago National Park for providing access to the study site and park facilities, and to JAER S.A. laboratories for their logistical support. We are grateful to Lázaro Marín-Guirao and to the members from the Department of Ocean Sciences (University of California) for helpful advices. M.G. and M.C were funded by grants from the Spanish Ministry of Education and Research and Spanish Research Council, respectively.

References

  1. Amann, R., and W. Ludwig. 2000. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews 24: 555–565. doi:10.1111/j.1574-6976.2000.tb00557.x.CrossRefGoogle Scholar
  2. Amann, R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux, and D.A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiololgy 56: 1919–1925.Google Scholar
  3. Bongiorni, L., S. Mirto, A. Pusceddu, and R. Danovaro. 2005. Response of benthic protozoa and thraustochytrid protists to fish farm impact in seagrass (Posidonia oceanica) and soft-bottom sediments. Microbial Ecology 50: 268–276. doi:10.1007/s00248-004-0117-4.CrossRefGoogle Scholar
  4. Buhring, S.I., M. Elvert, and U. Witte. 2005. The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environmental Microbiology 7: 281–293. doi:10.1111/j.1462-2920.2004.00710.x.CrossRefGoogle Scholar
  5. Burke, D.J., E.P. Hamerlynck, and D. Hahn. 2002. Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology 68: 1157–1164. doi:10.1128/AEM.68.3.1157-1164.2002.CrossRefGoogle Scholar
  6. Burke, D.J., E.P. Hamerlynck, and D. Hahn. 2003. Interactions between the salt marsh grass Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing season. Soil Biology and Biochemistry 35: 501–511. doi:10.1016/S0038-0717(03)00004-X.CrossRefGoogle Scholar
  7. Calleja, M.Ll., N. Marbà, and C.M. Duarte. 2007. The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuarine Coastal and Shelf Sciences 73: 583–588. doi:10.1016/j.ecss.2007.02.016.CrossRefGoogle Scholar
  8. Canfield, D.E., B.B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113: 27–40. doi:10.1016/0025-3227(93)90147-N.CrossRefGoogle Scholar
  9. Cifuentes, A., J. Anton, S. Benlloch, A. Donnelly, R.A. Herbert, and F. Rodriguez-Valera. 2000. Prokaryotic diversity in Zostera noltii-colonized marine sediments. Applied and Environmental Microbiology 66: 1715–1719. doi:10.1128/AEM.66.4.1715-1719.2000.CrossRefGoogle Scholar
  10. Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.CrossRefGoogle Scholar
  11. Daims, H., A. Bruhl, R.I. Amann, K.H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB-338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology 22: 434–444.Google Scholar
  12. Danovaro, R. 1996. Detritus–Bacteria–Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Marine Biology 127: 1–13. doi:10.1007/BF00993638.CrossRefGoogle Scholar
  13. Danovaro, R., and C. Gambi. 2002. Biodiversity and trophic structure of nematode assemblages in seagrass system: evidence for a coupling with changes in food availability. Marine Biology 141: 667–677. doi:10.1007/s00227-002-0857-y.CrossRefGoogle Scholar
  14. Danovaro, R., M. Fabiano, and M. Boyer. 1994. Seasonal changes of benthic bacteria in a seagrass bed (Posidonia oceanica) of the Ligurian Sea in relation to origin, composition and fate of the sediment organic matter. Marine Biology 119: 489–500. doi:10.1007/BF00354310.CrossRefGoogle Scholar
  15. Danovaro, R., M. Armeni, A. Dell’ Anno, M. Fabiano, E. Manini, D. Marrale, S. Pusceddu, and S. Vanucci. 2001. Small-scale distribution of bacteria, enzymatic activities, and organic matter in coastal sediments. Microbial Ecology 42: 177–185.Google Scholar
  16. Duarte, C.M., M. Merino, N.S. Agawin, U. Janet, M.D. Fortes, M. Gallegos, N. Marbà, and M.A. Hemminga. 1998. Root production and belowground seagrass biomass. Marine Ecology Progress Series 171: 97–108.Google Scholar
  17. Duarte, C.M., M. Holmer, and N. Marbà. 2005. Plant–microbe interaction in seagrass meadows. In Interactions between macro- and microorganisms in marine sediments, ed. J. KotskaWashington: Coastal and Estuarine Studies, American Geophysical Union.Google Scholar
  18. Fossing, H., and B.B. Jørgensen. 1989. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry 8: 205–222. doi:10.1007/BF00002889.CrossRefGoogle Scholar
  19. Frederiksen, M.S., M. Holmer, E. Diaz-Almela, N. Marba, and C.M. Duarte. 2007. Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Marine Ecology Progress Series 345: 93–104. doi:10.3354/meps06990.CrossRefGoogle Scholar
  20. García-Martínez, M., J. Kuo, K. Kilminster, D.I. Walker, R. Rosselló-Mora, and C.M. Duarte. 2005. Microbial colonization in the seagrass Posidonia spp. roots. Marine Biology Research 1: 388–395. doi:10.1080/17451000500443419.CrossRefGoogle Scholar
  21. Haglund, A.L., P. Lantz, E. Tornblom, and L. Tranvik. 2003. Depth distribution of active bacteria and bacterial activity in lake sediment. FEMS Microbiology Ecology 46: 31–38. doi:10.1016/S0168-6496(03)00190-9.CrossRefGoogle Scholar
  22. Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.Google Scholar
  23. Hines, M.E., R.S. Evans, B.R. Sharak, S.G. Willis, S. Friedman, J.N. Rooney-Varga, and R. Devereux. 1999. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Applied and Environmental Microbiology 65: 2209–2216.Google Scholar
  24. Holmer, M., C.M. Duarte, and N. Marbà. 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239. doi:10.1023/B:BIOG.0000005326.35071.51.CrossRefGoogle Scholar
  25. Jørgensen, B.B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. Geomicrobiology Journal 1: 11–27.CrossRefGoogle Scholar
  26. Jørgensen, B.B. 1982. Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature 296: 643–645. doi:10.1038/296643a0.CrossRefGoogle Scholar
  27. Kristensen, E., and D.M. Alongi. 2006. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography 51: 1557–1571.Google Scholar
  28. Kristensen, E., and M. Holmer. 2001. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2 , NO3 , and SO4 2−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta 65: 419–433. doi:10.1016/S0016-7037(00)00532-9.CrossRefGoogle Scholar
  29. Llobet-Brossa, E. 2000. Microbial community structure and dynamics of Wadden Sea sediment. Bremen: Ph.D. thesis.Google Scholar
  30. Llobet-Brossa, E., R. Rosselló-Mora, and R.I. Amann. 1998. Microbial community composition of Wadden Sea sediment as revealed by fluorescence in situ hybridization. Applied and Environmental Microbiology 64: 2691–2696.Google Scholar
  31. Llobet-Brossa, E., R. Rabus, M.E. Böttcher, M. Könneke, N. Finke, A. Schramm, R.L. Meyer, S. Grötzchel, R. Rossello-Mora, and R.I. Amann. 2002. Community structure and activity of sulfate reducing bacteria in an intertidal surface-sediment: a multimethods approach. Aquatic Microbial Ecology 29: 211–226. doi:10.3354/ame029211.CrossRefGoogle Scholar
  32. Luna, G.M., E. Manini, and R. Danovaro. 2002. Large fraction of dead and inactive Bacteria in coastal marine sediments: Comparison of protocols for determination and ecological significance. Applied and Environmental Microbiology 68: 3509–3513. doi:10.1128/AEM.68.7.3509-3513.2002.CrossRefGoogle Scholar
  33. Manz, W., R.I. Amann, W. Ludwig, M. Vancanneyt, and K.H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142: 1097–1106.CrossRefGoogle Scholar
  34. Manz, W., M. Eisenbrecher, T.R. Neu, and U. Szewzyk. 1998. Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiology Ecology 25: 43–61. doi:10.1111/j.1574-6941.1998.tb00459.x.CrossRefGoogle Scholar
  35. Marbà, N., M. Holmer, E. Gacia, and C. Barrón. 2006. Seagrass beds and coastal biogeochemistry. In Seagrasses: biology, ecology and conservation, eds. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 135–157. Dordrecht: Springer.Google Scholar
  36. Marbà, N., M. Calleja, C.M. Duarte, E. Alvarez, E. Díaz-Almela, and M. Holmer. 2007. Iron additions reduce sulfide intrusion and reverse seagrass (Posidonia oceanica) decline in carbonate sediments. Ecosystems 10: 745–756. doi:10.1007/s10021-007-9053-8.CrossRefGoogle Scholar
  37. Mirto, S., T. La Rosa, R. Danovaro, and A. Mazzola. 2000. Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the Western Mediterranean. Marine Pollution Bulletin 40: 244–252. doi:10.1016/S0025-326X(99)00209-X.CrossRefGoogle Scholar
  38. Muyzer, G., A. Teske, C.O. Wirsen, and H.W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16s rDNA fragments. Archives of Microbiology 164: 165–172. doi:10.1007/BF02529967.CrossRefGoogle Scholar
  39. Papaspyrou, S., T. Gregersen, R.P. Cox, M. Thessalou-Legaki, and E. Kristensen. 2005. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquatic Microbiology Ecology 38: 181–190. doi:10.3354/ame038181.CrossRefGoogle Scholar
  40. Parkes, R.J., B.A. Cragg, S.J. Bale, J.M. Getlifff, K. Goodman, P.A. Rochelle, J.C. Fry, A.J. Weightman, and S.M. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371: 410–413. doi:10.1038/371410a0.CrossRefGoogle Scholar
  41. Patel, A.B., K. Fukami, and T. Nishijima. 2001. Extracellular proteolytic activity in the surface sediment of and eutrophic inlet. Microbes and Environment 16: 25–35. doi:10.1264/jsme2.2001.25.CrossRefGoogle Scholar
  42. Pruesse, E., C. Quast, K. Knittel, B.M. Fuchs, W.G. Ludwig, J. Peplies, and F.O. Glockner. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35: 7188–7196. doi:10.1093/nar/gkm864.CrossRefGoogle Scholar
  43. Ravenschlag, K., K. Sahm, J. Pernthaler, and R.I. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Applied and Environmental Microbiology 65: 3982–3989.Google Scholar
  44. Ravenschlag, K., K. Sahm, C. Knoblauch, B.B. Jorgensen, and R.I. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Applied and Environmental Microbiology 66: 3592–3602. doi:10.1128/AEM.66.8.3592-3602.2000.CrossRefGoogle Scholar
  45. Rosselló-Mora, R., B. Thandrup, H. Shcäfer, R. Weller, and R.I. Amann. 1999. The response of the microbial communities of marine sediments to organic carbon input under anaerobic conditions. Systematic and Applied Microbiology 22: 237–248.Google Scholar
  46. Rusch, A., M. Huettel, C.E. Reimers, G.L. Taghon, and C.M. Fuller. 2003. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiology Ecology 44: 89–100. doi:10.1111/j.1574-6941.2003.tb01093.x.CrossRefGoogle Scholar
  47. Sahm, K., B.J. Mac Gregor, B.B. Jorgensen, and D.A. Stahl. 1999. Sulfate reduction and vertical distribution of sulfate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal sediment. Environmental Microbiology 1: 65–74. doi:10.1046/j.1462-2920.1999.00007.x.CrossRefGoogle Scholar
  48. Sass, A.M., A. Eschemann, M. Kuhl, R. Thar, H. Sass, and H. Cypionka. 2002. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiology Ecology 40: 47–54.Google Scholar
  49. Schmidt, J.L., J.W. Deming, P.A. Jumars, and R.G. Keil. 1998. Constancy of bacterial abundance in surficial marine sediments. Limnology and Oceanography 435: 976–982.CrossRefGoogle Scholar
  50. Snaidr, J., R.I. Amann, I. Huber, W. Ludwig, and K.-H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology 63: 2884–2896.Google Scholar
  51. Sørensen, J., and B.B. Jørgensen. 1987. Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry. Geochimica et Cosmochimica Acta 51: 1583–1590. doi:10.1016/0016-7037(87)90339-5.CrossRefGoogle Scholar
  52. Sorensen, K.B., B. Glazer, A. Hannides, and E. Gaidos. 2007. Spatial structure of the microbial community in sandy carbonate sediment. Marine Ecology Progress Series 346: 61–74. doi:10.3354/meps06996.CrossRefGoogle Scholar
  53. Tabatabai, M.A. 1974. Turbidimetric sulfate analyses. Sulfur Institutional Journal 10: 11–13.Google Scholar
  54. Tankeré, S.P.C., D.J. Bourne, F.L.L. Muller, and V. Torskiv. 2002. Microenvironments and microbial community structure in sediments. Environmental Microbiology 4: 97–105. doi:10.1046/j.1462-2920.2002.00274.x.CrossRefGoogle Scholar
  55. Tholosan, O., F. Lamy, J. Garcin, T. Polychronaki, and A. Bianchi. 1999. Biphasic extracellular proteolytic enzyme activity in benthic water and sediment in the northwestern Mediterranean Sea. Applied and Environmental Microbiology 65: 1619–1626.Google Scholar
  56. Van Mooy, B.A.S., and R.G. Keil. 2002. Seasonal variation in sedimentary amino acids and the association of organic matter with mineral surfaces in a sandy eelgrass meadow. Marine Ecology Progress Series 227: 275–280. doi:10.3354/meps227275.CrossRefGoogle Scholar
  57. Wieringa, E.B.A., J. Overmann, and H. Cypionka. 2000. Detection of abundant sulfate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environmental Microbiology 2: 417–427. doi:10.1046/j.1462-2920.2000.00123.x.CrossRefGoogle Scholar
  58. Wilms, R., H. Sass, B. Kopke, J. Koster, H. Cypionka, and B. Engelen. 2006. Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Applied and Environmental Microbiology 72: 2756–2764. doi:10.1128/AEM.72.4.2756-2764.2006.CrossRefGoogle Scholar
  59. Wollast, R. 1991. The coastal organic carbon cycle: Fluxes, sources and sinks. In Ocean marine processes in global change, eds. R.F.C. Mantoura, J.M. Martín, and R. Wollast, 365–381. Chichester: Wiley.Google Scholar
  60. Zaballos, M., A. López-López, S. Bartual, R. Pushker, B. Legault, L. Ovreas, and F. Rodríguez-Valera. 2006. Prokaryotic diversity at two off-shore oceanic locations and depths. FEMS Microbiology Ecology 56: 359–370. doi:10.1111/j.1574-6941.2006.00060.x.CrossRefGoogle Scholar
  61. Zarda, B., D. Hahn, A. Chanzinotas, W. Schönhuber, A. Neef, R.I. Amann, and J. Zeyer. 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Archives in Microbiology 168: 185–192. doi:10.1007/s002030050486.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2008

Authors and Affiliations

  • Micaela García-Martínez
    • 1
  • Arantxa López-López
    • 1
  • María Ll. Calleja
    • 1
    • 2
  • Núria Marbà
    • 1
  • Carlos M. Duarte
    • 1
  1. 1.Instituto Mediterráneo de Estudios Avanzados(CSIC-UIB)EsporlesSpain
  2. 2.Department of Ocean SciencesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations