Estuaries and Coasts

, Volume 31, Issue 5, pp 912–919 | Cite as

Do Spur-Throated Grasshoppers, Melanoplus spp. (Orthoptera: Acrididae), Exert Top-Down Control on Smooth Cordgrass Spartina alterniflora in Northern New England?

  • David Samuel JohnsonEmail author
  • Brita Juliet Jessen


Recently, strong top-down (consumer) control of cordgrass (Spartina alterniflora) has been demonstrated. Here, we manipulated the densities of cordgrass consumers, acridid grasshoppers (Melanoplus bivittatus and Melanoplus femurrubrum), to examine their impact on cordgrass in the Plum Island Estuary (PIE), MA, USA. After 1 month, there was no detectable effect of grasshopper density on S. alterniflora biomass and grasshoppers at the highest densities (34 individuals per square meter) consumed only ~14% of the standing stock biomass. However, significant impacts of grasshopper density on grazing damage were seen. For example, plant damage and scarring length increased by 160% and 6,156%, respectively, at the highest grasshopper densities relative to exclusion (zero grasshoppers) densities. Plant height was significantly reduced with increasing grasshopper densities, although this may be a function of leaf tip removal instead of reduced plant growth. No other strong consumers of cordgrass (e.g., Littoraria irrorata, Prokelisia marginata) were observed in PIE and we suggest that consumer regulation of cordgrass is weak in this system.


Spartina alterniflora Top-down control Chewing insects Melanoplus spp. Acridid grasshoppers Salt marsh 



We thank C. Kennedy and C. E. Goranson for field assistance. J.W. Fleeger, M.A. Grippo, K.A. Galván, R. S. Warren, and three anonymous reviewers provided helpful manuscript comments. This work was supported in part by the National Science Foundation under Grants No. 0213767 and 9726921.


  1. Baldwin, I.T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences of the United States of America 95: 8113–8118. doi: 10.1073/pnas.95.14.8113.CrossRefGoogle Scholar
  2. Barimo, J.F., and D.R. Young. 2002. Grasshopper (Orthoptera: Acrididae)–plant–environmental interactions in relation to zonation on an Atlantic Coast barrier island. Environmental Entomology 31: 1158–1167.CrossRefGoogle Scholar
  3. Beckerman, A.P. 2002. The distribution of Melanoplus femurrubrum: fear and freezing in Connecticut. Oikos 99: 131–140. doi: 10.1034/j.1600-0706.2002.990113.x.CrossRefGoogle Scholar
  4. Belovsky, G.E., and J.B. Slade. 1995. Dynamics of some Montana grasshopper populations: relationships among weather, food abundance and intraspecific competition. Oecologia 101: 383–396. doi: 10.1007/BF00328826.CrossRefGoogle Scholar
  5. Belovsky, G.E., and J.B. Slade. 2000. Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences of the United States of America 97: 14412–14417. doi: 10.1073/pnas.250483797.CrossRefGoogle Scholar
  6. Bertness, M.D., and S.W. Shumway. 1992. Consumer driven pollen limitation of seed production in marsh grasses. American Journal of Botany 79: 288–293. doi: 10.2307/2445017.CrossRefGoogle Scholar
  7. Bertness, M.D., C. Crain, C. Holdredge, and N. Sala. 2008. Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology 22: 131–139. doi: 10.1111/j.1523-1739.2007.00801.x.CrossRefGoogle Scholar
  8. Cebrian, J., and J. Lartigue. 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs 74: 237–259. doi: 10.1890/03-4019.CrossRefGoogle Scholar
  9. Chase, J.M. 1996. Varying resource abundances and competitive dynamics. American Naturalist 147: 649–654. doi: 10.1086/285871.CrossRefGoogle Scholar
  10. Daehler, C.C., and D.R. Strong. 1995. Impact of high herbivore densities on introduced smooth cordgrass, Spartina alterniflora, invading San Francisco Bay, California. Estuaries 18: 409–417. doi: 10.2307/1352323.CrossRefGoogle Scholar
  11. Daehler, C.C., and D.R. Strong. 1997. Reduced herbivory resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivory-free growth. Oecologia 110: 99–108. doi: 10.1007/s004420050138.CrossRefGoogle Scholar
  12. Davis, L.V., and I.E. Gray. 1966. Zonal and seasonal distribution of insects in North Carolina salt marshes. Ecological Monographs 36: 275–295. doi: 10.2307/1942419.CrossRefGoogle Scholar
  13. Deegan, L.A., J.L. Bowen, D. Drake, J.W. Fleeger, C.T. Friedrichs, K.A. Galván, J.E. Hobbie, C. Hopkinson, J.M. Johnson, D.S. Johnson, L.E. Lemay, E. Miller, B.J. Peterson, C. Picard, S. Sheldon, J. Vallino, and R.S. Warren. 2007. Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecological Applications 17: S42–S63. doi: 10.1890/06-0452.1.CrossRefGoogle Scholar
  14. Denno, R.F., C. Gratton, M.A. Peterson, G.A. Langellotto, D.L. Finke, and A.F. Huberty. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83: 1443–1458.Google Scholar
  15. Denno, R.F., C. Gratton, H. Döbel, and D.L. Finke. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology 84: 1032–1044. doi: 10.1890/0012-9658(2003)084[1032:PRARSO]2.0.CO;2.CrossRefGoogle Scholar
  16. Drake, D.C., B.J. Peterson, L.A. Deegan, L.A. Harris, E.E. Miller, and R.S. Warren. 2008. Plant nitrogen dynamics in fertilized and natural New England salt marshes: a paired N-15 tracer study. Marine Ecology Progress Series 354: 35–46. doi: 10.3354/meps07170.CrossRefGoogle Scholar
  17. Finke, D.L., and R.F. Denno. 2004. Predator diversity dampens trophic cascades. Nature 429: 407–410. doi: 10.1038/nature02554.CrossRefGoogle Scholar
  18. Fleeger, J.W., D.S. Johnson, K.A. Galván, and L.A. Deegan. 2008. Top-down and bottom-up control of infauna varies across the salt marsh landscape. Journal of Experimental Marine Biology and Ecology 357: 20–34. doi: 10.1016/j.jembe.2007.12.003.CrossRefGoogle Scholar
  19. Goranson, C.E., C.-K. Ho, and S.C. Pennings. 2004. Environmental gradients and herbivore feeding preferences in coastal salt marshes. Oecologia 140: 591–600. doi: 10.1007/s00442-004-1615-2.CrossRefGoogle Scholar
  20. Gustafson, D.J., J. Kilheffer, and B.R. Silliman. 2006. Relative effects of Littoraria irrorata and Prokelisia marginata on Spartina alterniflora. Estuaries and Coasts 29: 639–644.Google Scholar
  21. McFarlin, C.R., J.S. Brewer, T.L. Buck, and S.C. Pennings. 2008. Impact of fertilization on a salt marsh food web in Georgia. Estuaries and Coasts 31: 313–325.Google Scholar
  22. McGoff, N.M. 2004. The influence of the marsh grasshopper, Orchelimum fidicinium on nutrient cycling and productivity of Spartina alterniflora in a salt marsh environment. M.S. Thesis, University of Virginia, Charlottesville, Virginia.Google Scholar
  23. Mendelssohn, I.A., and J.T. Morris. 2000. Ecophysiological controls on the growth of Spartina alterniflora. In Concepts and controversies in tidal marsh ecology, eds. M. P. Weinstein, and D. A. Kreeger, 59–80. Dordrecht: Kluwer.Google Scholar
  24. Mitsch, W.J., and J.G. Gosselink. 2000. Wetlands. 4New York: Van Nostrand Reinhold.Google Scholar
  25. Odum, E.P., and A. del la Cruz. 1967. Estuaries 383–385. ed. G.H. Lauff. Am. Assoc. Adv. Sci. Publ. 83.Google Scholar
  26. Onsager, J.A., and J.E. Henry. 1977. A method for estimating the density of rangeland grasshoppers (Orthoptera: Acrididae) in experimental plots. Acrida 6: 231–237.Google Scholar
  27. Pennings, S.C., and M.D. Bertness. 2001. Salt marsh communities. In Marine community ecology, eds. M. D. Bertness, , S. D. Gaines, and M. E. Hay, 289–316. Sunderland: Sinauer.Google Scholar
  28. Pennings, S.C., and B.R. Silliman. 2005. Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology 86: 2310–2319. doi: 10.1890/04-1022.CrossRefGoogle Scholar
  29. Pennings, S.C., E.L. Siska, and M.D. Bertness. 2001. Latitudinal differences in plant palatability in Atlantic Coast salt marshes. Ecology 82: 1344–1359.Google Scholar
  30. Pennings, S.C., M. Zimmer, N. Dias, M. Sprung, N. Dave, C.-K. Ho, A. Kunza, C. McFarlin, M. Mews, A. Pfauder, and C. Salgado. 2007. Latitudinal variation in plant–herbivore interactions in European salt marshes. Oikos 116: 543–549.Google Scholar
  31. Porter, E.E., R.A. Redak, and H.E. Braker. 1996. Density, biomass, and diversity of grasshoppers (Orthoptera: Acrididae) in a California native grassland. Great Basin Naturalist 56: 172–176.Google Scholar
  32. Schmitz, O.J., A.P. Beckerman, and K. O’Brien. 1997. Behaviorally-mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388–1399.Google Scholar
  33. Silliman, B.R., and M.D. Bertness. 2002. A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences 99: 10500–10505. doi: 10.1073/pnas.162366599.CrossRefGoogle Scholar
  34. Silliman, B.R., and A. Bortolus. 2003. Underestimation of Spartina production in western Atlantic salt marshes: marsh invertebrates eat more than just detritus. Oikos 101: 549–555. doi: 10.1034/j.1600-0706.2003.12070.x.CrossRefGoogle Scholar
  35. Silliman, B.R., and J.C. Zieman. 2001. Top-down control of Spartina alterniflora growth by periwinkle grazing in a Virginia salt marsh. Ecology 82: 2830–2845.Google Scholar
  36. Siska, E.L., S.C. Pennings, T.L. Buck, and M.D. Hanisak. 2002. Latitudinal variation in palatability of salt marsh plants: which traits are responsible? Ecology 83: 3369–3381.CrossRefGoogle Scholar
  37. Smalley, A.E. 1960. Energy flow of a salt marsh grasshopper population. Ecology 41: 672–677. doi: 10.2307/1931800.CrossRefGoogle Scholar
  38. Smith, T.J. III, and W.E. Odum. 1981. The effects of grazing by snow geese on coastal salt marshes. Ecology 62: 98–106.CrossRefGoogle Scholar
  39. Strauss, S.Y., J.A. Rudgers, J.A. Lau, and R.E. Irwin. 2002. Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution 17: 278–285. doi: 10.1016/S0169-5347(02)02483-7.CrossRefGoogle Scholar
  40. Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.CrossRefGoogle Scholar
  41. Toth, G.B., M. Karlsson, and H. Pavia. 2007. Mesoherbivores reduce net growth and induce chemical resistance in natural seaweed populations. Oecologia 152: 245–255. doi: 10.1007/s00442-006-0643-5.CrossRefGoogle Scholar
  42. Tyrell, M.C., M. Dionne, and J.A. Edgerly. 2008. Physical factors mediate effects of grazing by a non-indigenous snail species on salt marsh cordgrass (Spartina alterniflora) in New England marshes. ICES Journal of Marine Science 65: 746–752.CrossRefGoogle Scholar
  43. Valiela, I. 1995. Marine ecological processes. 2New York: Springer.Google Scholar
  44. Vince, S.W., I. Valiela, and J.M. Teal. 1981. An experimental study of the structure of herbivorous insect communities in a salt marsh. Ecology 62: 1662–1678. doi: 10.2307/1941520.CrossRefGoogle Scholar
  45. Wason, E.L., and S. Pennings. 2008. Grasshopper (Orthoptera: Tettigoniidae) species composition and size across latitude in Atlantic coast salt marshes. Estuaries and Coasts 31: 335–343.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2008

Authors and Affiliations

  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations