Estuaries and Coasts

, Volume 31, Issue 5, pp 941–959 | Cite as

Ecological Impact of the Introduction to New Zealand of Asian Date Mussels and Cordgrass—The Foraminiferal, Ostracod and Molluscan Record

  • Bruce W. HaywardEmail author
  • Hugh R. Grenfell
  • Ashwaq T. Sabaa
  • Margaret S. Morley


The ecological impact from the establishment of dense intertidal beds of introduced Asian date mussels (Musculista senhousia) and cordgrass (Spartina alterniflora) in five northern New Zealand estuaries and harbours was documented in 2005–2006, using the fossil record of the shells of foraminifera, ostracods and molluscs in paired sediment cores and surface samples taken from inside and outside selected beds. The most significant changes in faunal composition in all, but the most saline sites, generally occurred in both cores in each pair and could be attributed to the impact of decreased salinity and pH as a result of increased freshwater runoff following clearance of the surrounding forest in the 19th century and urban development in the late 20th century. Establishment of Asian date mussel beds had a greatest impact on the composition of ostracod faunas. At near oceanic salinity, the mussels had completely replaced the native infaunal bivalve fauna, but had little impact on the foraminifera. At more brackish sites, the presence of mussel shells appears to have buffered the calcareous foraminifera from the effects of lowered pH, which had dissolved this component outside the beds. Establishment of cordgrass patches had no impact on ostracod faunas, and little on molluscs except at Kaipara, where introduced Pacific oysters had colonised the cordgrass. Cordgrass had the most impact on the foraminifera. At brackish sites, cordgrass patches had been colonised by agglutinated foraminiferal species different from those that dominate outside. In cordgrass at more saline sites, agglutinated foraminifera have invaded and bloomed at the expense of calcareous Ammonia spp., which dominated outside the patches.


Ecological impact Asian date mussels Cordgrass Foraminifera Ostracoda Mollusca New Zealand 



We thank Rhiannon Daymond-King for assistance in the laboratory, Ewen Cameron for identifying the species of cordgrass and Kerry Swanson and George Scott for critically reading the manuscript and suggesting improvements. This research was funded by the New Zealand Foundation for Research, Science and Technology.

Supplementary material

12237_2008_9070_MOESM1_ESM.xls (308 kb)
ESM 1 (XLS 315 KB)


  1. Abrahim, G., and R. Parker. 2002. Heavy-metal contaminants in Tamaki Estuary: impact of city development and growth, Auckland, New Zealand. Environmental Geology 42: 883–890. doi: 10.1007/s00254-002-0593-0.CrossRefGoogle Scholar
  2. Alve, E., and J.W. Murray. 1999. Marginal marine environments of the Skagerrak and Kattegat: a baseline study of living (stained) benthic foraminiferal ecology. Palaeogeography Palaeoclimatology Palaeoecology 146: 171–193. doi: 10.1016/S0031-0182(98)00131-X.CrossRefGoogle Scholar
  3. Bouchet, V.M.P., J.-P. Debenay, P.-G. Sauriau, J. Radford-Knoery, and P. Soletchnik. 2007. Effects of short-term environmental disturbances on living benthic foraminifera during the Pacific oyster summer mortality in the Marennes-Oléron Bay (France). Marine Environmental Research 64: 358–383. doi: 10.1016/j.marenvres.2007.02.007.CrossRefGoogle Scholar
  4. Buzas, M.A. 1970. Spatial homogeneity: statistical analyses of unispecies and multispecies populations of Foraminifera. Ecology 51: 871–879. doi: 10.2307/1933980.CrossRefGoogle Scholar
  5. Campbell, D.E., H.T. Odum, and G.A. Knox. 1990. Organization of a new ecosystem: Exotic Spartina alterniflora marsh in New Zealand. In Spartina workshop record, eds. T.F. Mumfored, , P. Peyton, J.R. Sayce, and S. Harbell, 24–25. Seattle: University of Washington and Washington Sea Grant Program.Google Scholar
  6. Carlton, J.T., and G.M. Ruiz. 2005. The magnitude and consequences of bioinvasions in marine ecosystems: Implications for conservation biology. In Marine conservation biology: the science of maintaining the sea’s biodiversity, eds. E.A. Norse, , and L.B. Crowder, 123–148. Washington: Island.Google Scholar
  7. Copin-Montegut, G. 1996. Chimie de l’eau de mer. Paris: Institut Océanographique.Google Scholar
  8. Cranfield, H.J., D.P. Gordon, R.C. Willan, B.A. Marshall, C.N. Battershill, M.P. Francis, W.A. Nelson, C.J. Glasby, and G.B. Read. 1998. Adventive marine species in New Zealand. NIWA Technical Report 34, Wellington, New Zealand.Google Scholar
  9. Creese, R., S. Hooker, S. De Luca, and Y. Wharton. 1997. Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. New Zealand Journal of Marine and Freshwater Research 31: 225–236.Google Scholar
  10. Crooks, J.A. 2002. Characterizing the consequences of invasions: The role of introduced ecosystem engineers. Oikos 97: 153–166. doi: 10.1034/j.1600-0706.2002.970201.x.CrossRefGoogle Scholar
  11. Crooks, J.A., and H.S. Khim. 1999. Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. Journal of Experimental Marine Biology and Ecology 240: 53–75. doi: 10.1016/S0022-0981(99)00041-6.CrossRefGoogle Scholar
  12. Culver, S.J., and B.P. Horton. 2005. Infaunal marsh foraminifera from the Outer Banks, North Carolina, U.S.A. Journal of Foraminiferal Research 35: 148–170. doi: 10.2113/35.2.148.CrossRefGoogle Scholar
  13. Davis, M.H., and M.E. Davis. 2006. Styela clava (Tunicata: Ascidacea) a new addition to the fauna of New Zealand. Porcupine Marine Natural History Society Newsletter 20: 23–28.Google Scholar
  14. Debenay, J.-P. 2000. Foraminifers of paralic tropical environments. Micropaleontology 46supplement 1: 153–160. doi: 10.2113/46.2.153.Google Scholar
  15. Dinamani, P. 1971. Occurrence of the Japanese oyster, Crassostrea gigas (Thunberg) in Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research 5: 352–357.Google Scholar
  16. Doody, J.P. 1990. Spartina—friend or foe? A conservation viewpoint. In Spartina anglica—a research review, eds. A.J. Gray, , and P.E.M. Benham, 77–79. London: Natural Environment Research Council and HMSOITE research publication no. 2.Google Scholar
  17. Dromgoole, F.I., and B.A. Foster. 1983. Changes to the marine biota of the Auckland Harbour. Tane 29: 79–96.Google Scholar
  18. Geslin, E., J.-P. Debenay, W. Duleba, and C. Bonetti. 2002. Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas. Marine Micropaleontology 45: 151–168. doi: 10.1016/S0377-8398(01)00042-1.CrossRefGoogle Scholar
  19. Goldstein, S., and G.T. Watkins. 1998. Elevation and the distribution of salt-marsh foraminifera, St Catherines Island, Georgia: a taphonomic approach. Palaios 13: 570–580. doi: 10.2307/3515348.CrossRefGoogle Scholar
  20. Green, M.A., R.C. Aller, and J.Y. Aller. 1993. Carbonate dissolution and temporal abundances of foraminifera in Long Island Sound sediments. Limnology and Oceanography 38: 331–345.Google Scholar
  21. Grenfell, H.R., B.W. Hayward, and M. Horrocks. 2007. Foraminiferal record of ecological impact of deforestation and oyster farms, Mahurangi Harbour, New Zealand. Marine and Freshwater Research 58: 475–491. doi: 10.1071/MF06155.CrossRefGoogle Scholar
  22. Hartmann, G. 1982. Beitrag zur Ostracodenfauna Neuseelands (mit einem Nachtrag zur Ostracodenfauna der Westküste Australiens). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 79: 119–150.Google Scholar
  23. Hayek, L.-A.C., and M.A. Buzas. 1997. Surveying natural populations. New York: Columbia University Press.Google Scholar
  24. Hayward, B.W. 1997. Introduced marine organisms in New Zealand and their impact in the Waitemata Harbour, Auckland. Tane 36: 197–223.Google Scholar
  25. Hayward, B.W., and C.J. Hollis. 1994. Brackish foraminifera in New Zealand: a taxonomic and ecologic review. Micropaleontology 40: 185–222. doi: 10.2307/1485816.CrossRefGoogle Scholar
  26. Hayward, B.W., and M.S. Morley. 2000. Crab predation on the small introduced bivalve, Theora lubrica. Poirieria 26: 29–30.Google Scholar
  27. Hayward, B.W., and M.S. Morley. 2008. Intertidal life of the Tamaki Estuary and its entrance, Auckland. Auckland Regional Council Technical Report, Auckland, New Zealand (in press).Google Scholar
  28. Hayward, B.W., H.R. Grenfell, A.D. Pullin, C.M. Reid, and C.J. Hollis. 1997. Foraminiferal associations in the upper Waitemata Harbour, Auckland, New Zealand. Journal of the Royal Society of New Zealand 27: 21–51.Google Scholar
  29. Hayward, B.W., H.R. Grenfell, C.M. Reid, and K.A. Hayward. 1999a. Recent New Zealand shallow-water benthic foraminifera: taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment. Institute of Geological and Nuclear Sciences Monograph 21, Lower Hutt, New Zealand.Google Scholar
  30. Hayward, B.W., M.S. Morley, A.B. Stephenson, W.M. Blom, H.R. Grenfell, R. Prasad, D. Rogan, F. Thompson, J. Cheetham, and M. Webb. 1999b. Intertidal and subtidal biota and habitats of the central Waitemata Harbour. Auckland Regional Council Technical Publication No. 127, Auckland, New Zealand.Google Scholar
  31. Hayward, B.W., M.S. Morley, J.J. Hayward, A.B. Stephenson, W.M. Blom, K.A. Hayward, and H.R. Grenfell. 1999c. Monitoring studies of the benthic ecology of Waitemata Harbour, New Zealand. Records of the Auckland Museum 36: 95–117.Google Scholar
  32. Hayward, B.W., H.R. Grenfell, K. Nicholson, R. Parker, J. Wilmhurst, M. Horrocks, A. Swales, and A.T. Sabaa. 2004a. Foraminiferal record of human impact on intertidal estuarine environments in New Zealand’s largest city. Marine Micropaleontology 53: 37–66. doi: 10.1016/j.marmicro.2004.03.001.CrossRefGoogle Scholar
  33. Hayward, B.W., G.H. Scott, H.R. Grenfell, R. Carter, and J.H. Lipps. 2004b. Techniques for estimation of tidal elevation and confinement (~salinity) histories of sheltered harbours and estuaries using benthic foraminifera: examples from New Zealand. The Holocene 14: 218–232. doi: 10.1191/0959683604hl678rp.CrossRefGoogle Scholar
  34. Hayward, B.W., H.R. Grenfell, A.T. Sabaa, M.S. Morley, and M. Horrocks. 2006. Impact and timing of increased freshwater runoff into sheltered harbour environments around Auckland City, New Zealand. Estuaries and Coasts 29: 165–182.Google Scholar
  35. Hedge, P., and L.K. Kriwoken. 2000. Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Austral Ecology 25: 150–159. doi: 10.1046/j.1442-9993.2000.01016.x.Google Scholar
  36. Hornibrook, N. De B. 1952. Tertiary and recent marine ostracods of New Zealand. New Zealand Geological Survey Paleontological Bulletin 18, Lower Hutt, New Zealand.Google Scholar
  37. Hubbard, J.C.E., and T.R. Partridge. 1981. Tidal immersion and the growth of Spartina anglica marshes in the Waihopai River Estuary, New Zealand. New Zealand Journal of Botany 19: 115–121.Google Scholar
  38. Hume, T.M., K. Bryan, K. Berkenbusch, and A. Swales. 2002. Evidence for the effects of catchment sediment runoff preserved in estuarine sediments. Auckland Zealand: Auckland Regional Council Technical Publication No. 166.Google Scholar
  39. Jackson, D., C.F. Mason, and S.P. Long. 1985. Macro-invertebrate populations and production on a salt-marsh in east England dominated by Spartina anglica. Oecologia 65: 406–411. doi: 10.1007/BF00378916.CrossRefGoogle Scholar
  40. Kovach, W.L. 1993. MVSP shareware, multivariate statistics package. Pentraeth: Kovach Computing Services.Google Scholar
  41. Langer, M.R., and J.H. Lipps. 2006. Assembly and persistence of foraminifera in introduced mangroves on Moorea, French Polynesia. Micropaleontology 52: 343–355. doi: 10.2113/gsmicropal.52.4.343.CrossRefGoogle Scholar
  42. Le Cadre, V., J.-P. Debenay, and M. Lesourd. 2003. Low pH effects on Ammonia beccarii test deformation: implications for using test deformations as a pollution indicator. Journal of Foraminiferal Research 33: 1–9. doi: 10.2113/0330001.CrossRefGoogle Scholar
  43. Matthews, A., H.R. Grenfell, B.W. Hayward, and M. Horrocks. 2005. Foraminiferal record of sewage outfall impacts on the inner Manukau Harbour, Auckland, New Zealand. New Zealand Journal of Marine and Freshwater Research 39: 193–215.Google Scholar
  44. Michaelidis, B., C. Ouzounis, A. Paleras, and H.O. Pörtner. 2005. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series 293: 109–118. doi: 10.3354/meps293109.CrossRefGoogle Scholar
  45. Millard, A.V., and P.R. Evans. 1984. Colonisation of mudflats by Spartina anglica: Some effects on invertebrate and shorebird populations at Lindisfarne. In Spartina anglica in Great Britain. Focus on nature conservation No. 5, ed. P. Doody, 41–48. Attingham: Nature Conservancy Council.Google Scholar
  46. Morley, M.S. 1988. Report on the continuing study of Musculista senhousia (Benson, 1842). Poirieria 515: 4–8.Google Scholar
  47. Morley, M.S., and B.W. Hayward. 2007. Intertidal and shallow-water Ostracoda of the Waitemata Harbour, New Zealand. Records of the Auckland Museum 44: 17–32.CrossRefGoogle Scholar
  48. Murray, J.W. 1991. Ecology and distribution of benthic foraminifera. In Biology of foraminifera, eds. J.J. Lee, , and O.R. Anderson, 221–253. London: Academic.Google Scholar
  49. Murray, J.W. 2000. The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera. Journal of Foraminiferal Research 30: 244–245. doi: 10.2113/0300244.CrossRefGoogle Scholar
  50. Murray, J.W. 2006. Ecology and applications of benthic foraminifera. Cambridge: Cambridge University Press.Google Scholar
  51. Murray, J.W., and E. Alve. 1999. Taphonomic experiments on marginal marine foraminiferal assemblages: how much ecological information is preserved. Palaeogeography, Palaeoclimatology, Palaeoecology 149: 183–197. doi: 10.1016/S0031-0182(98)00200-4.CrossRefGoogle Scholar
  52. Orr, J.C., and 26 Others 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686. doi: 10.1038/nature04095.CrossRefGoogle Scholar
  53. Osenga, G.A., and B.C. Coull. 1983. Spartina alterniflora (Loisel) root structure and meiofaunal abundance. Journal of Experimental Marine Biology and Ecology 67: 221–225. doi: 10.1016/0022-0981(83)90040-0.CrossRefGoogle Scholar
  54. Partridge, T.R. 1987. Spartina in New Zealand. New Zealand Journal of Botany 25: 567–575.Google Scholar
  55. Patterson, R.T., and E. Fishbein. 1989. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. Journal of Paleontology 63: 245–248.Google Scholar
  56. Phleger, F.B. 1965. Patterns of marsh foraminifera, Galveston Bay, Texas. Limnology and Oceanography 10: R169–R184.Google Scholar
  57. Phleger, F.B. 1970. Foraminiferal populations and marine marsh processes. Limnology and Oceanography 15: 522–534.CrossRefGoogle Scholar
  58. Powell, A.W.B. 1979. New Zealand Mollusca. Auckland: Collins.Google Scholar
  59. Read, G.B., and D.P. Gordon. 1991. Adventive occurrence of the fouling serpulid Ficopomatus enigmaticus (Polychaeta) in New Zealand. New Zealand Journal of Marine and Freshwater Research 25: 269–273.Google Scholar
  60. Sayce, K. 1990. Species displaced by Spartina in the Pacific Northwest. In Spartina workshop record, eds. T.F. Mumford, , P. Peyton, J.R. Sayce, and S. Harbell, 26–27. Seattle: University of Washington and Washington Sea Grant Programme.Google Scholar
  61. Scott, D.B., E.S. Collins, J. Duggan, A. Asioli, T. Saito, and S. Hasegawa. 1996. Pacific Rim marsh foraminiferal distributions: implications for sea-level studies. Journal of Coastal Research 12: 850–861.Google Scholar
  62. Sen Gupta, B.K. 1999. Foraminifera in marginal marine environments. In Modern foraminifera, ed. B.K. Sen Gupta, , 141–159. Dordrecht: Kluwer Academic.Google Scholar
  63. Swales, A., T.M. Hume, M.S. McGlone, R. Pilvio, R. Ovenden, N. Zviguina, S. Hatton, P. Nicholls, R. Budd, J. Hewitt, S. Pickmere, and K. Costley. 2002a. Evidence for the physical effects of catchment sediment runoff preserved in estuarine sediments: phase II (field study). Auckland, New Zealand: Auckland Regional Council Technical Publication 221.Google Scholar
  64. Swales, A., R.B. Williamson, L.F. Van Dam, M.J. Stroud, and M.S. McGlone. 2002b. Reconstruction of urban stormwater contamination of an estuary using catchment history and sediment profile dating. Estuaries 25: 43–56.CrossRefGoogle Scholar
  65. Swales, A., I.T. Macdonald, and M.O. Green. 2004. Influence of wave and sediment dynamics on cordgrass (Spartina anglica) growth and sediment accumulation on an exposed intertidal flat. Estuaries 27: 225–243.CrossRefGoogle Scholar
  66. Swallow, J.E. 2000. Intra-annular variability and patchiness in living assemblages of salt-marsh foraminifera from the Mill Rythe Creek, Chichester Harbour, England. Journal of Micropalaeontology 19: 9–22.CrossRefGoogle Scholar
  67. Swanson, K.M. 1979. The marine Fauna of New Zealand: ostracods of the Otago Shelf. Wellington, New Zealand: New Zealand Oceanographic Institute Memoir 78.Google Scholar
  68. Turner, S., and B. Riddle. 2001. Estuarine sedimentation and vegetation—management issues and monitoring priorities. Environment Waikato Internal Series 2001/05.Google Scholar
  69. Wang, P. 1992. Distribution of foraminifera in estuarine deposits: A comparison between Asia, Europe and Australia. In Centenary of Japanese micropaleontology, eds. K. Ishizaki, , and T. Saito, 71–83. Tokyo: Terra Scientific.Google Scholar
  70. Willan, R.C. 1985. Successful establishment of the Asian mussel Musculista senhousia (Benson in Cantor, 1842) in New Zealand. Records of Auckland Institute and Museum 22: 85–96.Google Scholar
  71. Willan, R.C. 1987. The mussel Musculista senhousia in Australasia: another aggressive alien highlights the need for quarantine at ports. The Bulletin of Marine Science 41: 475–489.Google Scholar
  72. Yassini, I., and B.G. Jones. 1995. Recent foraminifera and Ostracoda from estuarine and shelf environments on the southeastern coast of Australia. Wollongong: University of Wollongong Press.Google Scholar

Sources of Unpublished Material

  1. Creese, R.G., and S.H. Hooker. Unpublished data. 1996. The ecology and environmental impact of the introduced Asian date mussel Musculista senhousia. Unpublished report of Auckland Uniservices Ltd to Dept of Conservation, Auckland, New Zealand.Google Scholar
  2. Gillespie, P.A., R. Asher, G. Franco, and J. Stark. Unpublished data. 1990. Environmental impact of the use of amitrole/dalapon herbicide sprays to control Spartina in Waimea Inlet, Nelson, Part II: environmental monitoring programme. Cawthron Institute Report to the Nelson Catchment Board, Nelson, New Zealand.Google Scholar
  3. Hayward, B.W., H.R. Grenfell, A.T. Sabaa, and M.S. Morley. Unpublished data. Foraminiferal, ostracod and mollusc census counts from Asian data mussel and cordgrass study cores and surface samples, northern New Zealand, are available online at
  4. McGlone, M.S. 1994. Unpublished report on the pollen analysis of cores from the Mahurangi Estuary. Landcare Research, Lincoln, 5p.Google Scholar
  5. Swales, A., T.M. Hume, J.W. Oldman, and M.O. Green. 1997. Mahurangi Estuary: Sedimentation history and recent human impacts. NIWA Client Report, ARC60201.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2008

Authors and Affiliations

  • Bruce W. Hayward
    • 1
    Email author
  • Hugh R. Grenfell
    • 1
  • Ashwaq T. Sabaa
    • 1
  • Margaret S. Morley
    • 1
    • 2
  1. 1.Geomarine ResearchAucklandNew Zealand
  2. 2.Auckland War Memorial MuseumAucklandNew Zealand

Personalised recommendations