Economic Botany

, Volume 69, Issue 2, pp 171–184 | Cite as

Insights into the Responsiveness of Cork Oak (Quercus suber L.) to Bark Harvesting

  • Augusta CostaEmail author
  • Luís Catela Nunes
  • Heinrich Spiecker
  • José Graça

Insights into the Responsiveness of Cork Oak ( Quercus suber L.) to Bark Harvesting

The cork oak (Quercus suber L.) is harvested for its bark (cork), a highly valuable non-timber forest product. Recurrent cork harvesting is practiced over the lifetime of the tree and constitutes a stressful action that, while artificially promoting cork growth, may severely deplete tree vigor after an exploitation time span. To date, few long-term studies have been conducted regarding the effect of recurrent cork harvests on cork growth rates, and there is a complete lack of knowledge on the effect of the stress, induced by cork harvesting, on the vigor of the cork oak. In this study we propose to address the resilience of the cork oak to cork harvesting, using cork-ring width as an indicator of tree vigor. We use dendrochronological methods to develop an extended cork-ring width series that was analyzed by autoregressive integrated moving average modeling with an intervention analysis approach. We show that cork harvesting represents a human-induced loss of tree resilience only after six consecutive harvests, and that only after a single stochastic cork-harvesting event may trigger a sudden collapse in cork oak vigor. Our results also suggest that the tree (optimum) exploitation period of 110–120 years, which includes more than nine consecutive harvests, extends more than 35 years beyond the tree vigor breakpoint (occurring at the sixth consecutive harvest). Within this time frame, the tree is producing cork instinctively to survive, and its vulnerability to other (a)biotic stresses may increase, leading to untimely cork oak decline. These results suggest that there is a great potential in the time-series analysis of cork-ring widths for the development of tools that may enhance typical cork oak management planning by addressing both economic and ecological objectives.

Key Words

Non-timber forest product cork-rings ARIMA modeling Mediterranean evergreen cork oak woodlands dendrochronology 

Compreender a capacidade de resposta do sobreiro ( Quercus suber L.) ao descortiçamento

O sobreiro (Quercus suber L.) distingue-se das outras árvores pelas características singulares da sua espessa casca suberosa, a cortiça. Atualmente, a cortiça é considerada um importante produto não-lenhoso da floresta da região Mediterrânica, com elevado valor comercial. A extração da cortiça (descortiçamento) é feita periodicamente ao longo da vida da árvore, em sucessivos ciclos de produção de cortiça. Após um descortiçamento, a camada geradora de cortiça (felogene) morre e a árvore tem a capacidade de regenerar uma nova que, quase imediatamente, começa a formar novas camadas de cortiça. A longo prazo, os sucessivos descortiçamentos, do mesmo modo que “forçam” a árvore a produzir novas camadas de cortiça, afetam decisivamente os processos fisiológicos da árvore. Apesar de bem estudadas, as reações fisiológicas imediatas do sobreiro ao descortiçamento e a curva crescimento de cortiça num ciclo de produção, nada se sabe sobre como a árvore reage a sucessivos descortiçamentos, ao longo da sua vida.

Neste estudo, apresenta-se uma abordagem inovadora para obter informação sobre a variação da resiliência do sobreiro ao descortiçamento. Assume-se que a largura do anel de crescimento da cortiça é um indicador do vigor vegetativo da árvore e efetuou-se uma análise dendrocronológica de séries temporais extensas da largura dos anéis para modelar o crescimento da cortiça. Os resultados obtidos mostraram que a resposta da árvore ao descortiçamento é diferente ao longo da sua vida. A partir de determinado descortiçamento, a árvore tem um colapso da sua resiliência ao descortiçamento, reduzindo drasticamente a largura do seu anel de crescimento da cortiça. A explorabilidade económica da árvore estende-se muito para além deste colapso na sua resiliência ao descortiçamento, a partir do qual poderá aumentar a vulnerabilidade da árvore a outros agentes nocivos (a)bióticos e a promover a sua morte prematura.



This research was partially supported by the IsoCork project (Climate effects on cork growth assessed by isotope fingerprinting) (EXPL/AGR/FOR/1220/2012) funded by FCT-MCTES. Augusta Costa’s contribution was funded by the Foundation for Science and Technology of the Portuguese Ministry of Education and Science (FCT-MEC). The authors acknowledge comments on the manuscript from two anonymous reviewers and final text editing from the Economic Botany editor.

Supplementary material

12231_2015_9305_MOESM1_ESM.docx (26 kb)
ESM 1 (docx 26.0 kb)

Literature Cited

  1. APCOR (Portuguese Cork Association). 2012. Cortiça—Cork 2012. (26 November 2013).
  2. Branco, M. and A. P. Ramos. 2009. Coping with pests and diseases. The tree. In: Cork oak woodlands on the edge. Ecology, adaptive management, and restoration, eds. J. Aronson, J. S. Pereira, and J. G. Pausas, 103–111. Washington, D.C.: Island Press.Google Scholar
  3. Caritat, A., E. Gutiérrez, and M. Molinas. 2000. Influence of weather on cork-ring width. Tree Physiology 20:893–900.PubMedCrossRefGoogle Scholar
  4. Chapin, F. S., E.-D. Schulze, and H. A. Mooney. 1990. The ecology and dynamics of storage in plants. Annual Review of Ecology and Systematics 21:423–447.CrossRefGoogle Scholar
  5. Clutter, J. L., J. C. Folrtson, L. V. Pienaar, G. H. Brister, and R. L. Bailey. 1992. Timber management: A quantitative approach. John Wiley and Sons, Florida.Google Scholar
  6. Cooke, G. B. 1961. Cork and the cork tree. Oxford-London-New York-Paris: Pergamon Press.Google Scholar
  7. Costa, A., H. Pereira, and A. Oliveira. 2001. A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees 15:438–443.CrossRefGoogle Scholar
  8. ———, ———, and ———. 2002. Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Annals of Forest Science 59:429–437.CrossRefGoogle Scholar
  9. Delvaux, C., B. Sinsin, F. Darchambeau, and P. Van Damme. 2009. Recovery from bark harvesting of 12 medicinal tree species in Benin, West Africa. Journal of Applied Ecology 46:703–712.CrossRefGoogle Scholar
  10. FAO. 2013. State of Mediterranean forests. Food and Agriculture Organization of the United Nations (FAO). . (October 2013).
  11. Ferreira, A., F. Lopes, and H. Pereira. 2000. Caractérisation de la croissance et de la qualité du liège dans une région de production. Annals of Forest Science 57:187–193.CrossRefGoogle Scholar
  12. Fialho, C., F. Lopes, and H. Pereira. 2001. The effect of cork removal on the radial growth and phenology of young cork oak trees. Forest Ecology and Management 141:251–258.CrossRefGoogle Scholar
  13. Gaoue, O. G. and T. Ticktin. 2007. Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: Variation across ecological regions and its impacts on population structure. Biological Conservation 137:424–436.CrossRefGoogle Scholar
  14. ———, C. C. Horvitz, T. Ticktin, U. K. Steiner, and S. Tuljapurka. 2013. Defoliation and bark harvesting affect life-history traits of a tropical tree. Journal of Ecology 101:1563–1571.CrossRefGoogle Scholar
  15. Gourlay, I. D. and H. Pereira. 1997. The effect of bark stripping on wood production in cork-oak (Quercus suber L.) and problems of growth ring definition. In: Cork oak and cork / Sobreiro e cortiça, ed. H. Pereira, 99–107. Lisbon: CFE/ISA.Google Scholar
  16. Graça, J. and H. Pereira. 2004. The periderm development in Quercus suber L. IAWA Journal 25:325–335.CrossRefGoogle Scholar
  17. Guedje, N. M., P. A. Zuidema, H. During, B. Foahom, and J. Lejoly. 2007. Tree bark as a non-timber forest product: The effect of bark collection on population structure and dynamics of Garcinia lucida Vesque. Forest Ecology and Management 240:1–12.CrossRefGoogle Scholar
  18. Holmes, R. L. 1999. Program COFECHA—Crossdating and measurement quality control. User’s manual. Laboratory of Tree-ring Research, University of Arizona, U.S.A.Google Scholar
  19. Leal, S., E. Nunes, and H. Pereira. 2008. Cork oak (Quercus suber L.) wood growth and vessel characteristics variations in relation to climate and cork harvesting. European Journal of Forest Research 127:33–41.CrossRefGoogle Scholar
  20. Machado, D. P. 1935. Contribuição para o estudo da formação da cortiça no sobreiro. Revista Agronómica 23:75–104.Google Scholar
  21. ——— 1944. A intensidade do crescimento da cortiça e melhoramento da sua qualidade nas sucessivas despelas. Boletim da Junta Nacional da Cortiça 74:57–58.Google Scholar
  22. Mendes, A. M. and J. A. Graça. 2009. Cork bottle stoppers and other cork products. In: Cork oak woodlands on the edge. Ecology, adaptive management, and restoration, eds. J. Aronson, J. S. Pereira, and J. G. Pausas, 59–111. Washington, D.C.: Island Press.Google Scholar
  23. Moreira, F., I. Duarte, F. Catry, and V. Acácio. 2007. Cork extraction as a key factor determining post-fire cork oak survival in a mountain region of southern Portugal. Forest Ecology and Management 253:30–37.CrossRefGoogle Scholar
  24. Natividade, J. V. 1938. O que é cortiça. Boletim da Junta Nacional da Cortiça 1:13–21.Google Scholar
  25. ——— 1950. Subericultura. Lisbon: Direcção Geral dos Serviços Florestais e Aquícolas.Google Scholar
  26. Oliveira, G. and A. Costa. 2012. How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. Forest Ecology and Management 270:257–272.CrossRefGoogle Scholar
  27. ———, M. A. Martins-Loução, and O. Correia. 2002. The relative importance of cork harvesting and climate for stem radial growth of Quercus suber L. Annals of Forest Science 59:439–443.CrossRefGoogle Scholar
  28. Pereira, H. 2007. Cork: Biology, production and uses. Elsevier Publications, Amsterdam.Google Scholar
  29. ——— and M. Tomé. 2004. Non-wood products: Cork oak. In: Encyclopedia of Forest Sciences, eds. J. Burley, J. Evans, and J. A. Youngquist, 613–620. Oxford: Elsevier.Google Scholar
  30. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413:591–596.PubMedCrossRefGoogle Scholar
  31. Seidl, R. and K. Blennow. 2012. Pervasive growth reduction in Norway spruce forests following wind disturbance. PlosOne 7(3), e33301.CrossRefGoogle Scholar
  32. Stewart, K. 2009. Effects of bark harvest and other human activity on populations of the African cherry (Prunus africana) on Mount Oku, Cameroon. Forest Ecology and Management 258:1121–1128.CrossRefGoogle Scholar
  33. Ticktin, T. 2004. The ecological implications of harvesting non-timber forest products. Journal of Applied Ecology 41:11–21.CrossRefGoogle Scholar
  34. Wadt, L. H. O., K. A. Kainer, C. L. Staudhammer, and R. O. P. Serrano. 2008. Sustainable forest use in Brazilian extractive reserves: Natural regeneration of Brazil nut in exploited populations. Biological Conservation 141:332–346.CrossRefGoogle Scholar
  35. Zielonka, T. and P. Malcher. 2009. The dynamics of a mountain mixed forest under wind disturbance in the Tatra Mountains, central Europe—A dendroecological reconstruction. Canadian Journal of Forest Research 39:2215–2223.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2015

Authors and Affiliations

  • Augusta Costa
    • 1
    • 2
    Email author
  • Luís Catela Nunes
    • 3
  • Heinrich Spiecker
    • 4
  • José Graça
    • 5
  1. 1.Center for Environmental and Sustainability Research (CENSE), Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Instituto Nacional de Investigação Agrária e Veterinária, I.P.OeirasPortugal
  3. 3.Nova School of Business and EconomicsUniversidade Nova de LisboaLisboaPortugal
  4. 4.Chair of Forest GrowthAlbert-Ludwigs-University FreiburgFreiburgGermany
  5. 5.Instituto Superior de AgronomiaUniversidade de Lisboa, Centro de Estudos FlorestaisLisboaPortugal

Personalised recommendations