Economic Botany

, Volume 66, Issue 4, pp 328–343

The Archaic Diet in Mesoamerica: Incentive for Milpa Development and Species Domestication

  • Daniel Zizumbo-Villarreal
  • Alondra Flores-Silva
  • Patricia Colunga-García Marín


The Archaic Diet in Mesoamerica: Incentive for Milpa Development and Species Domestication. One of the central questions in the development of Mesoamerican civilization is how the alimentary, agronomic, and ecological complementarities were achieved within the milpa agroecosystem, which is one of its more important and distinctive cultural elements. In the Mesoamerican center of origin of agriculture and domestication of plants, located in western Mexico, we inquired among Náhuatl communities about the ancient dishes prepared with wild plants that are part of their ancient foodways, and the tools and technology used to prepare them. We found that the wild progenitors of Agave spp., Zea mays L, Cucurbita argyrosperma Hort. Ex L.H. Bayley, Phaseolus spp., Capsicum annum L., Solanum lycopersicum L., Physalis phyladelphica Lam, Spondias purpurea L., Persea americana Mill., and Hyptis suaveolens (L.) Poit are consumed in dishes that remain in the present food culture of the poor peasants, and are prepared with techniques and tools that were available in the Archaic period: Sun drying, roasting, toasting, baking, cracking, grinding, crushing, fermenting, and soaking in plain water or in water with ash, using three–stone fireplaces, stone toasters, crushers, grinders, rock pits, and three types of earth ovens. A remarkable finding was that beans could be incorporated into the diet without boiling, but just by toasting, stone grinding, and baking in corn dough tamales. Results obtained suggest that the basic Mesoamerican diet could have been shaped before the species involved were domesticated. Its nutritional complementarity since the Archaic period could have been one of the incentives for the development of the milpa system and the domestication of its species, achieving in this way also their ecological and agronomical complementarity.

Key Words

Archaic diet Mesoamerica domestication milpa foodways Agave Zea Cucurbita Phaseolus Capsicum 


La Dieta Arcaica en Mesoamérica: Incentivo para el Desarrollo de la Milpa en Mesoamérica y para la Domesticación de Especies. Una de las preguntas centrales acerca del desarrollo de la civilización Mesoamericana es cómo se logró la complementariedad alimentaria y agroecológica dentro del agroecosistema milpa, el cual es uno de sus elementos culturales más importantes y característicos. En el centro Mesoamericano de origen de agricultura y domesticación de plantas que se encuentra en el occidente de México, investigamos entre comunidades Náhuatls los platillos basados en plantas silvestres que forman parte de su cultura alimentaria antigua, y las técnicas e instrumentos que utilizan para elaborarlos. Encontramos que los ancestros silvestres de Agave spp., Zea mays L, Cucurbita argyrosperma Hort. Ex L.H. Bayley, Phaseolus spp., Capsicum annum L., Solanum lycopersicum L., Physalis phyladelphica Lam., Spondias purpurea L., Persea americana Mill., e Hyptis suaveolens (L.) Poit son consumidos en platillos que permanecen en la cultura alimentaria de los campesinos pobres, y que son elaboradas con técnicas y herramientas que estuvieron disponibles en el periodo arcaico: secado al sol, asado, tostado, horneado, triturado, molido, exprimido, fermentado y remojado en agua o en agua con cenizas, usando el fogón de tres piedras, los tostadores, exprimidores y moledores de piedra, los pozos de piedra y tres tipos de horno bajo tierra. Un hallazgo relevante es que los frijoles pudieron ser incorporados a la dieta sin ser hervidos, sino solo tostados, molidos en piedras y horneados en tamales de masa de maíz. Los resultados obtenidos sugieren que la dieta básica Mesoamericana pudo haberse conformado antes de que las especies involucradas fueran domesticadas. Su complementariedad nutricional desde el periodo Arcaico pudo haber sido uno de los incentivos para el desarrollo del agroecosistema milpa y la domesticación de sus especies, lográndose así también su complementariedad agroecológica.

Literature Cited

  1. Ballhorn, D. J., S. Kautz, M. Heil, and A. D. Hegeman. 2009. Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defense in nature. PLoS ONE 4(5):e5450. doi:10.1371/journal.pone.0005450.PubMedCrossRefGoogle Scholar
  2. Bautista, J. [1580] 1988. Relación de Amula: Zapotitlán, Tuxcacuezco; Cusalapa. In: Relaciones geográficas del siglo XVI: Nueva Galicia, ed., R. Acuña R, 53–82. México D.F.: Universidad Nacional Autónoma de México.Google Scholar
  3. Benz, B. 2001. Archaeological evidence of teocinte domestication from Guilá Naquitz, Oaxaca. Proceedings of the National Academy of Sciences of the United States of America 98:2104–2106.PubMedCrossRefGoogle Scholar
  4. Brush, C. F. 1965. Pox pottery: Earliest identified Mexican ceramic. Science 149:194–195.PubMedCrossRefGoogle Scholar
  5. Bye, R., D. Burgess, and A. Mares. 1975. Ethnobotany of western tarahumara of Chihuahua, Mexico: Notes on the genus Agave. Botanical Museum Leaflets. Harvard University 24(5):85–112.Google Scholar
  6. Callen, E. O. 1965. Food habits of some pre–columbian Mexican Indians. Economic Botany 19:335–343.CrossRefGoogle Scholar
  7. Castetter, E. F. and M. Opler. 1936. The ethnobiology of the Chiricahua and Mescalero Apache: The use of plants for foods, beverages, and narcotics. Ethnobiological Studies in the American Southwest. Vol. III. Albuquerque, New Mexico: The University of New Mexico Bulletin, Biological Series 4(5).Google Scholar
  8. ———, W. H. Bell, and A. R. Grove. 1938. The early utilization and the distribution of agave in the American Southwest. Ethnobiological Studies in the American Southwest. Vol. VI. Albuquerque, New Mexico: The University of New Mexico Bulletin, Biological Series 5(4).Google Scholar
  9. Chen, J. C., M. H. Chiu, R. L. Nie, G. A. Cordell, and S. X. Qiu. 2005. Cucurbitacins and cucurbitane glycosides: Structures and biological activities. Natural Product Reports 22:386–399.PubMedCrossRefGoogle Scholar
  10. Colunga-GarcíaMarín, P. and D. Zizumbo-Villarreal. 2007. Tequila and other agave spirits from west–central Mexico: Current germplasm diversity, conservation and origin. Biodiversity and Conservation 16:1653–1667.CrossRefGoogle Scholar
  11. Dering, P. 1999. Earth oven plant processing in archaic period economies: An example from a semi–arid savannah in south–central North America. American Antiquity 64(4):659–674.CrossRefGoogle Scholar
  12. Dixon, E. J. 2000. Bones, boats and bison: Archaeology and the first colonization of western North America. University of New Mexico Press, Albuquerque, New Mexico.Google Scholar
  13. Doebley, J. F. 1984. “Seeds” of wild grasses: A major food for southwestern Indians. Economic Botany 38:52–64.CrossRefGoogle Scholar
  14. Erickson, D., B. Smith, A. C. Clarke, D. H. Sandweiss, and N. Tuross. 2005. An Asian origin for a 10,000–year–old domesticated plant in the Americas. Proceedings of the National Academy of Sciences of the United States of America. 102:18315–18320.PubMedCrossRefGoogle Scholar
  15. Felger, R. and M. Moser. 1970. Seri use of agave (Century plant). Kiva 5(4):159–167.Google Scholar
  16. Fish, S. K., P. R. Fish, C. Miksicek, and J. Madsen. 1985. Prehistoric agave cultivation in southern Arizona. Desert Plants 7(2):107–112, 100.Google Scholar
  17. Flannery, K. V., ed. 1986. Guilá Naquitz, archaic foraging and early agriculture in Oaxaca Mexico. Academic Press, New York.Google Scholar
  18. Griffin, D. 2002. Prehistoric human impacts on fire regimes and vegetation in the northern intermountain west. Pages 77–100 in T. R. Vale, ed., Fire, native peoples, and the natural landscape. Island Press, Washington D.C.Google Scholar
  19. Jaenicke-Després, V. R. and B. D. Smith. 2006. Ancient DNA and the integration of archaeological and genetic approaches to the study of maize domestication. Pages 83–93 in J. Staller, R. Tykot, and B. Benz, eds., Histories of maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Academic Press, San Diego, California.Google Scholar
  20. ———, E. S. Buckler, B. D. Smith, M. T. P. Gilbert, A. Cooper, J. Doebley, and S. Pääbo. 2003. Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208.PubMedCrossRefGoogle Scholar
  21. Kelly, I. 1980. Ceramic sequence in Colima: Capacha, an early phase. Anthropological papers No. 37. Tucson, Arizona: University of Arizona Press.Google Scholar
  22. Kwak, M., J. Kami, and P. Gepts. 2009. The putative Mesoamerican center of domestication of Phaseolus vulgaris is located in the Lerma–Santiago Basin of Mexico. Crop Science 49:554–563.CrossRefGoogle Scholar
  23. Kuhnlein, H. V. and O. Receveur. 1996. Dietary change and traditional food systems of indigenous peoples. Annual Review of Nutrition 16:417–442.PubMedCrossRefGoogle Scholar
  24. Leach, J. D. 2007. Prebiotics in ancient diets. Food Science and Technology Bulletin: Functional foods 4(1):1–8.CrossRefGoogle Scholar
  25. ——— and K. D. Sobolik. 2010. High dietary intake of prebiotic inulin–type fructans in the prehistoric Chihuahuan Desert. British Journal of Nutrition 103(11):1558–1561.PubMedCrossRefGoogle Scholar
  26. Leonard, J. A., R. K. Wayne, J. Wheeler, R. Valadez, S. Guillén, and C. Vilà. 2002. Ancient DNA evidence for old world origin of new world dogs. Science 298:1613–1616.PubMedCrossRefGoogle Scholar
  27. Lewis, H. T. 1972. The role of fire in the domestication of plants and animals in Southwest Asia: A hypothesis. Man 7(2):195–222.CrossRefGoogle Scholar
  28. Lumholtz, C. 1902. Unknown Mexico: A record of five years’ exploration among the tribes of the western Sierra Madre; in the tierra caliente of Tepic and Jalisco; and among the Tarascos of Michoacan, Volume 1. C. Scribner’s Sons, New York.Google Scholar
  29. MacNeish, R. S. 1964. Ancient Mesoamerican civilization. Science 143(3606):531–537.PubMedCrossRefGoogle Scholar
  30. ——— and A. Nelken-Turner. 1983. The preceramic of Mesoamerica. Journal of Field Archaeology 10(1):71–84.Google Scholar
  31. Matsuoka, Y., Y. Vigouroux, M. Goodman, J. Sánchez, E. Buckler, and J. Doebley. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America 99:6080–6084.PubMedCrossRefGoogle Scholar
  32. McGovern, P. E., A. P. Underhill, H. Fang, F. Luan, G. R. Hall, H. Yu, C.-S. Wang, F. Cai, Z. Zhao, and G. M. Feinman. 2005. Chemical identification and cultural implications of a mixed fermented beverage from late prehistoric China. Asian Perspectives 44:249–274.CrossRefGoogle Scholar
  33. ———, J. Zhang, J. Tang, Z. Zhang, G. R. Hall, R. A. Moreau, A. Nuñez, E. D. Butrym, M. P. Richards, Ch.–S. Wang, G. Cheng, Z. Zhao, and Ch. Wang. 2004. Fermented beverages of pre–and proto–historic China. Washington, D.C.: Proceedings of the National Academy of Sciences of the United States of America 101:17593–17598.Google Scholar
  34. Metcalfe, S. E. 2006. Late quaternary environments of the northern deserts and central transvolcanic belt of Mexico. Annals of Missouri Botanical Garden 93(2):258–273.CrossRefGoogle Scholar
  35. Parker, K. C. 2002. Fire in Pre–European lowlands of the American southwest. Pages 101–142 in T. R. Vale, ed., Fire, native peoples, and the natural landscape. Island Press, Washington, D.C.Google Scholar
  36. Piperno, D. R. 2006. Quaternary environmental history and agricultural impact on vegetation in Central America. Annals of Missouri Botanical Garden 93:274–296.CrossRefGoogle Scholar
  37. ——— and K. V. Flannery. 2001. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences of the United States of America 98:2101–2103.PubMedCrossRefGoogle Scholar
  38. ———, J. E. Moreno, J. Iriarte, I. Holst, M. Lachniet, J. G. Jones, A. J. Ranere, and R. Castazo. 2007. Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proceedings of the National Academy of Sciences of the United States of America 104:11874–11881.PubMedCrossRefGoogle Scholar
  39. ———, A. J. Ranere, I. Holst, R. Dickau, J. Iriarte, and R. Dickau. 2009. Starch grain and phytolith evidence for early ninth millennium B.P. maize the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America 106:5019–5024.PubMedCrossRefGoogle Scholar
  40. Poinar, H. N., M. Kuch, D. K. Sobolik, I. Barnes, A. B. Stankiewicz, T. Kuder, W. G. Spaulding, V. M. Bryant, A. Cooper, and S. Pääbo. 2001. A molecular analysis of dietary diversity for three archaic Native Americans. Proceedings of the National Academy of Sciences of the United States of America 98:4317–4322.PubMedCrossRefGoogle Scholar
  41. Ranere, A. J., D. R. Piperno, I. Holst, R. Dickau, and J. Iriarte. 2009. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America 106:5014–5018.PubMedCrossRefGoogle Scholar
  42. Russell, E. 1983. Indian–set fires in the forests of the northeastern United States. Ecology 64:78–88.CrossRefGoogle Scholar
  43. Sanjur, O. I., D. R. Piperno, T. C. Andrés, and W. Wessel-Beaver. 2002. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences of the United States of America 99:535–540.PubMedCrossRefGoogle Scholar
  44. Savolainen, P., Y. Zhang, J. Luo, J. Lundeberg, and T. Leitner. 2002. Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613.PubMedCrossRefGoogle Scholar
  45. Sauer, C. 1948. Colima of New Spain in the sixteenth century—Ibero–Americana: 29. University of California Press, Berkeley.Google Scholar
  46. Serrano-Serrano, M., R. H. Andueza-Noh, J. Martínez-Castillo, D. G. Debouck, and M. I. Chacón. 2012. Evolution and domestication of lima bean in Mexico: Evidence from ribosomal DNA. Crop Science 52:1698–1712.CrossRefGoogle Scholar
  47. Smith, C. E. 1986. Preceramic plant remains from Guilá Naquitz. Pages 265–301 in K. V. Flannery, ed., Guilá Naquitz, Archaic foraging and early agriculture in Oaxaca, México. Academic Press, New York.Google Scholar
  48. Thoms, A. V. 2009. Rock of ages: Propagation of hot–rock cookery in western North America. Journal of Archaeological Science 36:573–591.CrossRefGoogle Scholar
  49. Turner, E. S. and T. R. Hester. 1999. A Field Guide to Stone Artifacts of Texas Indians (Gulf Publishing Field Guides). Taylor Trade Publishing, Boulder, Colorado.Google Scholar
  50. Van der Poel, A. F. B. 1990. Effect of processing on antinutritional factors and protein nutritional value of dry beans (Phaseolus vulgaris L.). A review. Animal Feed Science and Technology 29(3–4):179–208.CrossRefGoogle Scholar
  51. Vázquez, G., R. Cuevas, C. Cochrane, H. Hiltis, J. Santana, L. Guzmán. 1995. Flora de Manantlán: Plantas Vasculares de la Reserva de la Biosfera Sierra de Manantlán Jalisco–Colima, México, SIDA Botanical Miscellany No. 13. Ft. Worth, Texas: Botanical Research Institute of Texas.Google Scholar
  52. Wandsnider, L. 1997. The roasted and the boiled: Food composition and heat treatment with special emphasis on pit–hearth cooking. Journal of Anthropological Archaeology 16:1–48.CrossRefGoogle Scholar
  53. Wilkes, H. G. 1977. Hybridization of maize and teosinte, in Mexico and Guatemala and the improvement of maize. Economic Botany 31:254–293.CrossRefGoogle Scholar
  54. ——— 2007. Urgent notice to all maize researches: Disappearance and extinction of the last wild teosinte population is more than half completed. A modest proposal for teosinte evolution and conservation in situ: The Balsas, Guerrero, México. Maydica 52:49–58.Google Scholar
  55. Williams, G. W. 2003. References on the American Indian use of fire in ecosystems. USDA Forest Service. Washington, D.C. (7 September 2012).
  56. Wills, W. H. 1995. Archaic foraging and the beginning of food production in the American Southwest. Pages 215–242 in T. D. Price and A. B. Gebauer, eds., Last hunters, first farmers: New perspectives on the Prehistoric transition to agriculture. School of American Research Press, Santa Fe, New Mexico.Google Scholar
  57. Zizumbo-Villarreal, D. 1996. History of coconut (Cocos nucifera L.) in Mexico: 1539–1810. Genetic Resources and Crop Evolution 43:505–515.CrossRefGoogle Scholar
  58. ——— and P. Colunga-García-Marín. 2010. Origin of agriculture and plant domestication in West Mesoamerica. Genetic Resources and Crop Evolution 57:813–825.CrossRefGoogle Scholar
  59. ———, ———, E. Payró de la Cruz, P. Delgado-Valerio, and P. Gepts. 2005. Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Science 45(3):1073–1083.CrossRefGoogle Scholar
  60. ———, F. González-Zozaya, A. Olay-Barrientos, R. Platas-Ruíz, M. Cuevas-Sagardi, L. Almendros-López, and P. Colunga-García-Marín. 2009. Archaeological evidence of the cultural importance of Agave spp. in Pre–Hispanic Colima, México. Economic Botany 63(3):288–302.CrossRefGoogle Scholar
  61. ———, O. Vargas–Ponce, J. J. Rosales–Adame, and P. Colunga García–Marín. 2012. Sustainability of the traditional management of Agave genetic resources in the elaboration of mezcal and tequila spirits in western Mexico. Genetic Resources and Crop Evolution. Published online: March 02, 2012. DOI: 10.1007/s10722-012-9812-z.

Copyright information

© The New York Botanical Garden 2012

Authors and Affiliations

  • Daniel Zizumbo-Villarreal
    • 1
  • Alondra Flores-Silva
    • 1
  • Patricia Colunga-García Marín
    • 1
  1. 1.Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán A.C.MéridaMéxico

Personalised recommendations