Economic Botany

, Volume 66, Issue 1, pp 12–21 | Cite as

The Enigma of Solanum maglia in the Origin of the Chilean Cultivated Potato, Solanum tuberosum Chilotanum Group1

  • David Spooner
  • Shelley Jansky
  • Andrea Clausen
  • Maria del Rosario Herrera
  • Marc Ghislain


The Enigma of Solanum maglia in the Origin of the Chilean Cultivated Potato, Solanum tuberosum Chilotanum Group. Landrace potato cultivars occur in two broad geographic regions: the high Andes from western Venezuela south to northern Argentina (Solanum tuberosum Andigenum Group, “Andigenum”), and lowland south-central Chile (S. tuberosum Chilotanum Group, “Chilotanum”), with a coastal desert and 560 km between southernmost populations of Andigenum and Chilotanum. Unlike Andigenum landraces, Chilotanum landraces are adapted to long days and carry a 241 base pair plastid DNA deletion. However, Andigenum and Chilotanum landraces are morphologically similar. We investigated a hypothesis that Chilotanum landraces arose from Solanum maglia, a rare tuber-bearing species found in Chile and Argentina. This hypothesis was formulated first based on morphological analyses of starch grains of extant and preserved (12,500 years before present) S. maglia, and on putative sympatry of extant S. maglia and Chilotanum landraces. Our new starch grain analyses fail to support this hypothesis; we could find no evidence of current sympatric distributions, and S. maglia lacks the 241-bp plastid deletion. However, microsatellite data group all accessions of S. maglia exclusively with Chilotanum, which is supported by our previous observation at the single locus of the waxy gene. These results could be interpreted in various ways, but all explanations have problems. One explanation is that S. maglia is a progenitor of Chilotanum. However, the plastid deletion in Chilotanum but not S. maglia cannot be easily explained. Another explanation is that Chilotanum was formed by hybridization between S. maglia and pre-Chilotanum, but this conflicts with prior cladistic analyses. These new data shed light on aspects of this question and highlight various evolutionary scenarios, but the origin of Chilotanum and the involvement of S. maglia in its origin remain an enigma.

Key Words

Microsatellites potato Solanum maglia Solanum tuberosum Andigenum Group Solanum tuberosum Chilotanum Group 



We thank Juan Daniel Montenegro and Jorge Núñez for technical support in the amplification of SSR markers and the analysis of genetic data, respectively. We acknowledge the contributions of Kelly McMillan in the collection of starch granule data.

Literature Cited

  1. Ames, M. and D. M. Spooner. 2008. DNA from herbarium specimens settles a controversy about origins of the European potato. American Journal of Botany 95:252–257.PubMedCrossRefGoogle Scholar
  2. Brücher, H. 1963. Das südlichste Vorkommen diploider Kulturkartoffeln in Südamerika auf der Insel Chiloé. Qualitas Plantarum et Materiae Vegetabiles 9:187–202.CrossRefGoogle Scholar
  3. ——— 1965. Über ein “maritime” Wildkartoffel (Solanum maglia Molina) im argentinischen Anden-Gebirge. Berichte der Deutschen Botanischen Gesellschaft 78:492–498.Google Scholar
  4. Castronovo, A. 1949. Papas chilotas, descripciones y clave para el reconocimiento de muestras de papas recogidas en una excursión al sur de Chile. Revista de Investigaciones Agrícolas 3:209–245 + 8 pl.Google Scholar
  5. Chung, I. and D. Hadziyev. 1980. Tuber and starch characteristics of Alberta grown potatoes. Canadian Institute of Food Science and Technology 13:143–153.Google Scholar
  6. Contreras, M. A. 1987. Germoplasma chileno de papas (Solanum spp). Anales Simposio Recursos Fitogenéticos. Valdivia 1984. Universidad Austral de Chile, International Board for Plant Genetic Resources, 43–75.Google Scholar
  7. Contreras, A., L. Ciampi, S. Padulosi, and D. M. Spooner. 1993. Potato germplasm collecting expedition to the Guaitecas and Chonos Archipelagos, Chile, 1990. Potato Research 36:309–316.CrossRefGoogle Scholar
  8. Correll, D. S. 1962. The potato and its wild relatives. Contributions from the Texas Research Foundation. Botanical Studies 4:1–606.Google Scholar
  9. Dillehay, T. D. 1989. Monte Verde: A late Pleistocene settlement in Chile. Volume 1. Palaeoenvironment and site context. Washington and London: Smithsonian Institution Press.Google Scholar
  10. ———. 1997. Monte Verde: A late Pleistocene settlement in Chile. Volume 2. The archaeological context and interpretation. Washington and London: Smithsonian Institution Press.Google Scholar
  11. Dillehay, T. D., C. Ramírez, M. Pino, M. B. Collins, J. Rossen, and J. D. Pino-Navarro. 2008. Monte Verde: Seaweed, food, medicine, and the peopling of South America. Science 320:784–786.PubMedCrossRefGoogle Scholar
  12. Friedman, M. and M. Dao. 1992. Distribution of glycoalkaloids in potato plants and commercial potato products. Journal of Agricultural and Food Chemistry 40:419–423.CrossRefGoogle Scholar
  13. Geddes, R., C. T. Greenwood, and S. MacKenzie. 1965. Studies on the biosynthesis of starch granules. Part III. The properties of the components of starches from the growing potato tuber. Carbohydrate Research 1:71–82.CrossRefGoogle Scholar
  14. Ghislain, M., J. Núñez, M. del Rosario Herrera, and D. M. Spooner. 2009. The single Andigenum origin of Neo-Tuberosum materials is not supported by microsatellite and plastid marker analyses. Theoretical and Applied Genetics 118:963–969.PubMedCrossRefGoogle Scholar
  15. ———, D. M. Spooner, F. Rodríguez, F. Villamón, J. Núñez, C. Vásquez, R. Waugh, and M. Bonierbale. 2004. Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theoretical and Applied Genetics 108:881–890.PubMedCrossRefGoogle Scholar
  16. Grun, P. 1990. The evolution of cultivated potatoes. In: New perspectives on the origin and evolution of New World domesticated plants, ed. P. K. Bretting. Economic Botany (3 Suppl.) 44:39–55.Google Scholar
  17. Haslam, M. 2004. The decomposition of starch grains in soils: Implications for archaeological residue analysis. Journal of Archaeological Science 31:1715–1734.CrossRefGoogle Scholar
  18. Hawkes, J. G. 1962. The origin of Solanum juzepczukii Buk. and S. curtilobum Juz. et Buk. Zeitschrift fur Planzenzucht 47:1–14.Google Scholar
  19. ——— 1990. The potato: Evolution, biodiversity and genetic resources. Belhaven Press, Oxford.Google Scholar
  20. ——— and J. P. Hjerting. 1969. The potatoes of Argentina, Brazil, Paraguay and Uruguay: A biosystematic study. Oxford University Press, Oxford.Google Scholar
  21. Hermundstad, S. A. and S. J. Peloquin. 1985. Germplasm enhancement with potato haploids. Journal of Heredity 76:463–467.Google Scholar
  22. Hizukuri, S. 1969. The effect of environment temperature of plants on the physicochemical properties of their starches. Journal of the Japanese Society of Starch Science 17:73–88.Google Scholar
  23. Hosaka, K. 2002. Distribution of the 241 bp deletion of chloroplast DNA in wild potato species. American Journal of Potato Research 79:119–123.CrossRefGoogle Scholar
  24. ——— 2003. T-type chloroplast DNA in Solanum tuberosum L. ssp. tuberosum was conferred from some populations of S. tarijense Hawkes. American Journal of Potato Research 80:21–32.CrossRefGoogle Scholar
  25. ——— 2004. Evolutionary pathway of T-type chloroplast DNA in potato. American Journal of Potato Research 81:153–158.CrossRefGoogle Scholar
  26. Johns, T. and J. G. Alonso. 1990. Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica 50:203–210.CrossRefGoogle Scholar
  27. Liu, Q. 1997. Characterization of physic-chemical properties of starch from various potato and other sources. Ph.D. thesis, Universite Laval, Quebec, Canada.Google Scholar
  28. Mica, B. 1975. Characteristics of the starches of selected potato varieties. 1. Changes in starch content and starch granule size during storage. Starch 27:181–186.CrossRefGoogle Scholar
  29. Miller, J. T. and D. M. Spooner. 1999. Collapse of species boundaries in the wild potato Solanum brevicaule complex (Solanaceae, S. sect. Petota): Molecular data. Plant Systematics and Evolution 214:103–130.CrossRefGoogle Scholar
  30. Noda, T., S. Tsuda, M. Mori, S. Takigawa, C. Matsuura-Endo, K. Saito, W. H. A. Mangalika, A. Hanaoka, Y. Suzuki, and H. Yamauchi. 2004. The effect of harvest dates on the starch properties of various potato cultivars. Food Chemistry 86:119–125.CrossRefGoogle Scholar
  31. Ochoa, C. M. 1990. The potatoes of South America: Bolivia. Cambridge University Press, Cambridge.Google Scholar
  32. Ovchinnikova, A., E. Krylova, T. Gavrilenko, T. Smekalova, M. Zhuk, S. Knapp, and D. M. Spooner. 2011. Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). The Botanical Journal of the Linnean Society 165:107–155.CrossRefGoogle Scholar
  33. Raker, C. and D. M. Spooner. 2002. The Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: Microsatellite data. Crop Science 42:1451–1458.CrossRefGoogle Scholar
  34. Rodríguez, F., M. Ghislain, A. M. Clausen, S. H. Jansky, and D. M. Spooner. 2010. Hybrid origins of cultivated potatoes. Theoretical and Applied Genetics 121:1187–1198.PubMedCrossRefGoogle Scholar
  35. Schmiedische, P. E., J. G. Hawkes, and C. M. Ochoa. 1980. Breeding of the cultivated potato species Solanum x juzepczukii Buk. and Solanum x curtilobum Juz. et Buk. I. Euphytica 29:685–704.CrossRefGoogle Scholar
  36. Shannon, J. C., D. L. Garwood, and C. D. Boyer. 2009. Physiology of starch development. Page 894 in J. N. BeMiller and R. L. Whistler, eds., Starch: Chemistry and Technology. Elsevier, Amsterdam.Google Scholar
  37. Singh, J., L. Kaur, and O. J. McCarthy. 2009. Potato starch and its modification. Pages 273–318 in J. Singh and L. Kaur, eds., Advances in Potato Chemistry and Technology. Elsevier, San Diego.CrossRefGoogle Scholar
  38. Spooner, D. M. and A. M. Clausen. 1993. Wild potato (Solanum sect. Petota) germplasm collecting expedition to Argentina in 1990, and status of Argentinian potato germplasm resources. Potato Research 36:3–12.CrossRefGoogle Scholar
  39. ———, A. Contreras, and J. B. Bamberg. 1991. Potato germplasm collecting expedition to Chile, 1989, and utility of the Chilean species. American Potato Journal 68:681–690.CrossRefGoogle Scholar
  40. ———, K. McLean, G. Ramsay, R. Waugh, and G. J. Bryan. 2005. A single domestication for potato based on multilocus AFLP genotyping. Proceedings of the National Academy of Sciences USA 102:14694–14699.CrossRefGoogle Scholar
  41. ———, D. Fajardo, and G. J. Bryan. 2007a. Species limits of Solanum berthaultii Hawkes and S. tarijense Hawkes and the implications for species boundaries in Solanum sect. Petota. Taxon 56:987–999.CrossRefGoogle Scholar
  42. ———, J. Núñez, G. Trujillo, M. Herrera, F. Guzmán, and M. Ghislain. 2007b. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Sciences USA 104:19398–19403.CrossRefGoogle Scholar
  43. ———, T. Gavrilenko, S. H. Jansky, A. Ovchinnikova, E. Krylova, S. Knapp, and R. Simon. 2010. Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). American Journal of Botany 97:2049–2060.PubMedCrossRefGoogle Scholar
  44. Sykin, A. G. 1971. Zur Frage der Abstammung und der wildwachsenden Vorfahren chilenischer Kulturkartoffeln. Zeitschrijt fur Pflanzenzücht 65:1–14.Google Scholar
  45. Ugent, D. 1970. The potato: What is the origin of this important crop plant, and how did it first become domesticated? Science 170:1161–1166.PubMedCrossRefGoogle Scholar
  46. ——— and M. P. Verdun. 1983. Starch grains of the wild and cultivated Mexican species of Solanum, subsection Potatoe. Phytologia 53:351–363.Google Scholar
  47. ———, T. Dillehay, and C. Ramirez. 1987. Potato remains from a late Pleistocene settlement in Southcentral Chile. Economic Botany 41:17–27.CrossRefGoogle Scholar
  48. Valkonen, J. P. T., M. Keskitalo, T. Vasara, and L. Pietila. 1996. Potato glycoalkaloids: A burden or a blessing? Critical Reviews in Plant Sciences 15:1–20.Google Scholar
  49. Van den Berg, R. G., J. T. Miller, M. L. Ugarte, J. P. Kardolus, J. Villand, J. Nienhuis, and D. M. Spooner. 1998. Collapse of morphological species in the wild potato Solanum brevicaule complex (Solanaceae: sect. Petota). American Journal of Botany 85:92–109.CrossRefGoogle Scholar
  50. Verdun, M. P. 1982. Starch grains: A taxonomic character in Solanum (Tourn.) L., section Tuberarium. M.S. thesis, Southern Illinois University, Carbondale, Illinois.Google Scholar

Copyright information

© The New York Botanical Garden 2012

Authors and Affiliations

  • David Spooner
    • 1
    • 2
  • Shelley Jansky
    • 1
    • 2
  • Andrea Clausen
    • 3
  • Maria del Rosario Herrera
    • 4
  • Marc Ghislain
    • 4
  1. 1.U.S. Department of Agriculture, Agricultural Research Service, Vegetable Crops Research UnitMadisonUSA
  2. 2.Department of HorticultureUniversity of WisconsinMadisonUSA
  3. 3.Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA)BalcarceArgentina
  4. 4.International Potato Center (CIP)LimaPeru

Personalised recommendations