Economic Botany

, 65:308 | Cite as

The Origin of Southeastern Asian Triploid Edible Canna (Canna discolor Lindl.) Revealed by Molecular Cytogenetical Study1

  • Hideyuki Matoba
  • Nobuyuki Tanaka
  • Hiroshi Uchiyama
  • Tetsuo Koyama


The Origin of Southeastern Asian Triploid Edible Canna ( Canna discolor Lindl.) Revealed by Molecular Cytogenetical Study. Canna discolor Lindl. (Cannaceae), commonly known as edible canna, is often cultivated in Southeastern Asia for its starchy rhizomes. Based on morphological and karyological features, it is thought to be an allotriploid plant originated from hybridization between the closely allied C. coccinea Mill., C. patens Roscoe, C. plurituberosa T. Koyama & Nb. Tanaka, C. speciosa Roscoe, or C. indica L. In this study, to clarify the origin of triploid edible canna, physical mapping of 5S and 18S rDNA probes in C. discolor and its closely related five putative parental species was conducted. Fluorescence in situ hybridization (FISH) technique provided a useful chromosomal marker for discriminating among the diploid putative parental Canna species, and supported the hybrid origin of C. discolor between C. indica var. indica and C. plurituberosa.

Key Words

Alloploid Canna Edible canna FISH Origin Southeastern Asia Triploid 

分子細胞遺伝学的研究で明らかになった東南アジアの三倍体食用カンナの起源.食用カンナは,中南米を原産とするカンナ科の大型多年生草本で,東南アジアにも伝播してデンプンを含み肥大する根茎が地域的に食用に利用されている. 東南アジアで一般に食用カンナと呼ばれている三倍体種C. discolor(2n = 27)は,核型的な特徴から異質倍数性起源であることが示唆された. 本研究では, 現在までの形態学的および核型研究からC. discolorC. indicaとその近縁4分類群(C. patens, C. plurituberosa, C. speciosa, C. coccinea)との交雑起源であるという仮説を立て,それを検証するため, 5S及び18S ribosomal RNA遺伝子座の同時検出を行った.その結果, FISHのデータからC. discolorは,C. indicaの非還元配偶子(2n)とC. plurituberosaの減数配偶子(n)の交雑に由来する異質倍数体であると考えられる.



The authors thank Y. Hayami and M. Hamaguchi for taking care of our living materials. We also wish to thank Prof. David Bufford, Harvard University, for reviewing the English manuscript. This research is partially supported by Grant-in-Aid from Japanese Society for the Promotion of Science (to N. Tanaka) and Grant-in-Aid from Kochi Prefectural Government.

Literature Cited

  1. Anamthawat-Jónsson, K. and A. T. Thórsson. 2003. Natural hybridization in birch: Triploid hybrids between Betula nana and B. pubescens. Plant Cell. Tissue and Organ Culture 75:99–107.CrossRefGoogle Scholar
  2. Appels, R., W. L. Gerlach, E. S. Dennis, H. Swift, and W. J. Peacock. 1989. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78:293–311.CrossRefGoogle Scholar
  3. Datson, P. M. and B. G. Murray. 2006. Ribosomal DNA locus evolution in Nemesia: Transposition rather than structural rearrangement as the key mechanism? Chromosome Research 14:845–857.PubMedCrossRefGoogle Scholar
  4. D’Hont, A., A. Paget-Goy, J. Escoute, and F. Carreel. 2000. The interspecific genome structure of cultivated banana. Musa spp. revealed by genomic DNA in situ hybridization. Theoretical and Applied Genetics 100:177–183.Google Scholar
  5. Falistocco, E. and M. Falcinelli. 2003. Genomic organization of rDNA loci in natural populations of Medicago truncatula Gaertn. Hereditas 138:1–5.PubMedCrossRefGoogle Scholar
  6. Gu, Z. J. and H. Xiao. 2003. Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploidy complex (Theaceae). Plant Science 164:279–285.CrossRefGoogle Scholar
  7. Hasterok, R., E. Wolny, M. Hosiawa, M. Kowalczyk, S. Kulak-Ksiazczyk, T. Ksiazczyk, W. K. Heneen, and J. Maluszynska. 2006. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Annals of Botany 97:205–216.PubMedCrossRefGoogle Scholar
  8. Herman, M., N. K. Quynh, and D. Peters. 1999. Reappraisal of edible Canna as a high-value starch crop in Vietnam. Pages 415–424 in C. I. P. Program, ed., Report 1997–98. CIP, Lima, Peru.Google Scholar
  9. Hizume, M. 1993. Chromosomal localization of 5S rRNA genes in Vicia faba and Crepis capillaris. Cytologia 58:417–421.Google Scholar
  10. Imai, K. 2008. Edible canna: A prospective plant resource from South America. Japanese Journal of Plant Science 2:46–53.Google Scholar
  11. Iovene, M., E. Grzebelus, D. Carputo, J. Jiang, and P. W. Simson. 2008. Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. American Journal of Botany 95:793–804.PubMedCrossRefGoogle Scholar
  12. Jiang, J. and B. S. Gill. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068.PubMedCrossRefGoogle Scholar
  13. Kovarik, A., J. C. Pires, A. R. Leitch, K. Y. Lim, A. M. Sherwood, R. Matyasek, J. Rocca, D. E. Soltis, and P. S. Soltis. 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Traopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944.PubMedCrossRefGoogle Scholar
  14. Koyama, T. 1984. Plant Resources Studies. Kodanshya Scientific, Tokyo, Japan.Google Scholar
  15. Maas, P. J. M. and H. Maas. 1988. Cannaceae. In: Flora of Ecuador 32:1–9, eds. G. Harling and L. Andersson.Google Scholar
  16. Maluszynska, J. and J. S. Heslop-Harrison. 1991. Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant Journal 1:159–166.CrossRefGoogle Scholar
  17. Marasek, A., R. Hasterok, K. Wiejacha, and T. Orlikowska. 2004. Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7.PubMedCrossRefGoogle Scholar
  18. ———, H. Mizuochi, and K. Okazaki. 2006. The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151:279–290.CrossRefGoogle Scholar
  19. Matoba, H., T. Mizutani, K. Nagano, Y. Hoshi, and H. Uchiyama. 2007. Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas 144:235–243.PubMedCrossRefGoogle Scholar
  20. Matyasek, R., K. Y. Lim, A. Kovarik, and A. R. Leitch. 2003. Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91:268–275.PubMedCrossRefGoogle Scholar
  21. Ogawa, T., I. Tarumoto, B. Ma, M. Ueno, and S. Kurita. 2005. Genome differentiation in Lycoris species (Amaryllidaceae) identified by genomic in situ hybridization. Breeding Science 55:265–269.CrossRefGoogle Scholar
  22. Raskina, O., J. C. Barber, E. Nevo, and A. Belyayev. 2008. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenetic and Genome Research 120:351–357.PubMedCrossRefGoogle Scholar
  23. Sogin, M. L. 1990. Amplification of ribosomal RNA genes for molecular evolution studies. Pages 307–322 in M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds., PCR protocols. A guide to methods and applications. Academic Press, Inc, San Diego.Google Scholar
  24. Tanaka, N. 1998. Economic botanical notes on edible canna (Cannaceae) in South Vietnam. Journal of Japanese Botany 73:319–324.Google Scholar
  25. ——— 2001. Taxonomic revision of the family Cannaceae in the New World and Asia. Makinoa New Series 1:1–75.Google Scholar
  26. ——— 2004. The utilization of edible Canna plants in southeastern Asia and southern China. Economic Botany 58:112–117.CrossRefGoogle Scholar
  27. ——— and T. Koyama. 2000. A new species of Canna (Cannaceae) from Northern Argentina. Journal of Japanese Botany 75:89–91.Google Scholar
  28. ———, N. Inouchi, and T. Koyama. 2006. Edible canna and its starch: An unexploited starch-producing plant resources. Foods and Food Ingredients Journal of Japan 210:1–7.Google Scholar
  29. ———, H. Uchiyama, H. Matoba, and T. Koyama. 2009. Karyological analysis of the genus Canna (Cannaceae). Plant Systematics and Evolution 280:45–51.CrossRefGoogle Scholar
  30. Weiss, H. and J. Maluszynska. 2000. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261.PubMedCrossRefGoogle Scholar
  31. Weiss-Schneeweiss, H., G. M. Schneeweiss, T. F. Stuessy, T. Mabuchi, J. M. Park, C. G. Jang, and B. Y. Sun. 2007. Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytologist 173:669–682.CrossRefGoogle Scholar
  32. ———, K. Tremetsberger, G. M. Schneeweiss, J. S. Parker, and T. F. Stuessy. 2008. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Annals of Botany 101:909–918.PubMedCrossRefGoogle Scholar
  33. Yamamoto, Y., N. Tanaka, M. Hayafuji, Y. Iwahara, A. Miyazaki. 2007. Growth and productivity of edible canna 3 lines in warm southwest Japan. Japanese Journal of Tropical Agriculture 51(extra 1):95–96.Google Scholar

Copyright information

© The New York Botanical Garden 2011

Authors and Affiliations

  • Hideyuki Matoba
    • 1
    • 2
  • Nobuyuki Tanaka
    • 3
  • Hiroshi Uchiyama
    • 1
  • Tetsuo Koyama
    • 3
  1. 1.College of Bioresource SciencesNihon UniversityFujisawaJapan
  2. 2.Kanagawa Prefectural Museum of Natural HistoryOdawaraJapan
  3. 3.Kochi Prefectural Makino Botanical GardenKochiJapan

Personalised recommendations