Economic Botany

, Volume 65, Issue 3, pp 241–259 | Cite as

Di Ambang Kepunahan: proses mordan dengan menggunakan logam dari tumbuhan dalam pembuatan kain tradisional di Indonesia

  • Anthony B. Cunningham
  • I. Made Maduarta
  • Jean Howe
  • W. Ingram
  • Steven Jansen
Article

Abstract

Hanging by a Thread: Natural Metallic Mordant Processes in Traditional Indonesian Textiles. Despite the availability of synthetic dyes and the impact of significant religious, social, and economic change, textile weavers in more remote areas of Indonesia continue naturally dyed textile production as a living tradition. This paper documents mordant plants in Sulawesi, West Kalimantan, and nine islands in eastern Indonesia (Bali, Flores, Java, Lembata, Nusa Penida, Rai Jua, Savu, Sumba, and West Timor). These plants, such as various Symplocos species, are hyperaccumulators of aluminum compounds. Other plants used as sources of alkaline ash, of saponifiable oils and fats and for ritual purposes in the dyeing process, are also recorded.

Key Words

Natural mordants oil seeds Symplocos 

Hanging by a Thread: Natural Metallic Mordant Processes in Traditional Indonesian Textiles1

Di Ambang Kepunahan: proses mordan dengan menggunakan logam dari tumbuhan dalam pembuatan kain tradisional di Indonesia. Ditengah maraknya pemakaian warna sintetis serta terjadinya perubahan dalam keyakinan, keadaan sosial dan ekonomi, penenun di beberapa daerah terpencil tetap memproduksi kain warna alam sebagai sebuah tradisi. Jurnal ini membahas tumbuhan mordant atau perekat warna serta tantangan yang dihadapi dalam pemakaiannya di daerah Sulawesi dan Kalimantan serta di sembilan pulau lain di Indonesia mencakup Bali, Flores, Jawa, Lembata, Nusa Penida, Rai Jua, Sabu, Sumba dan Timor Barat. Tumbuhan mordant yang dibahas, seperti Symplocos, menganndung zat aluminum yang tinggi. Tumbuhan lain yang dipergunakan sebagai sumber abu alkali, minyak dan lemak saponifiable, serta yang dipakai dalam ritual proses mordant juga dibahas dalam artikel ini.

Literature Cited

  1. Ako, H., N. Kong, and A. Brown. 2005. Fatty acid profiles of kukui nut oils over time and from different sources. Industrial Crops and Products 22:169–174.CrossRefGoogle Scholar
  2. Andarwulan, N., D. Fardiaz, G. A. Wattimena, and K. Shetty. 1999. Antioxidant activity associated with lipid and phenolic mobilization during seed germination of Pangium edule Reinw. Journal of Agricultural Food Chemistry 47:3158–3163.CrossRefGoogle Scholar
  3. Anon. 2003. Analisa Potensi Desa di NTT. National Bureau of Statistics, Jakarta, Indonesia.Google Scholar
  4. Antùnez de Mayolo, K. 1989. Peruvian Natural Dye Plants. Economic Botany 43:181–191.CrossRefGoogle Scholar
  5. Baker, A. J. M. and R. R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126.Google Scholar
  6. Barnes, R. 1989. The ikat textiles of Lamalera: A study of an eastern Indonesian weaving tradition. Brill, Leiden.Google Scholar
  7. BPS. 2008. Selected Socio–Economic Indicators of Indonesia. Badan Pusat Statistik, March 2008.Google Scholar
  8. Burkhill, H. M. 1997. The Useful Plants of West Tropical Africa, Vol. 4. Kew Publishing, Kew, Surrey.Google Scholar
  9. Burkill, I. H. 2002. A Dictionary of the Economic Products of the Malay Peninsula, Vols. I and II. Ministry of Agriculture Malaysia, Kuala Lumpur.Google Scholar
  10. Chenery, E. M. 1946. Are Hydrangea flowers unique? Nature 158:240–241.CrossRefGoogle Scholar
  11. ——— 1948. Aluminum in the plant world, I. General survey in dicotyledons. Kew Bulletin 1948:173–183.CrossRefGoogle Scholar
  12. Chisholm, M. J. and C. Y. Hopkins. 1964. Fatty acid composition of some Cucurbitaceae seed oils. Canadian Journal of Chemistry 42:560–564.CrossRefGoogle Scholar
  13. Christensen, H. 2002. Ethnobotany of the Iban and the Kelabit. Sarawak, Malaysia: Forest Department and NEPCon, Denmark: University of Aarhus.Google Scholar
  14. Cunningham, A. B. 2001. Applied ethnobotany: People, wild plant use and conservation. Earthscan, London.Google Scholar
  15. Dhuique-Mayer, C., Y. Caro, M. Pina, J. Ruales, M. Dornier, and J. Graille. 2001. Biocatalytic properties of lipase in crude latex from babaco fruit (Carica pentagona). Biotechnology Letters 23:1021–1024.CrossRefGoogle Scholar
  16. Ferreira, A., N. Hulme, H. McNab, and A. Quye. 2004. The natural constituents of historical textile dyes. Chemistry Society Review 33:329–336.CrossRefGoogle Scholar
  17. Fiorillo, F., C. Palocci, S. Soro, and G. Pasqua. 2007. Latex lipase of Euphorbia characias L.: An aspecific acylhydrolase with several isoforms. Plant Science 172:722–727.CrossRefGoogle Scholar
  18. Foglia, T. A. and P. Villeneuve. 1997. Carica papaya latex–catalyzed synthesis of structured triacylglycerols. Journal of the American Oil Chemists Society 74:1447–1450.CrossRefGoogle Scholar
  19. Gavin, T. 2004. Iban ritual textiles. University of Singapore Press, Singapore.Google Scholar
  20. Hamilton, R. W., ed. 1994. Gift of the cotton maiden: Textiles of Flores and the Solor islands. Los Angeles: University of California Los Angeles, Fowler Museum.Google Scholar
  21. Heppell, M. 1994. Whither Dayak art? Pages 132–134 in P. M. Taylor, ed., Fragile Traditions, Indonesian Art in Jeopardy. University of Hawaii Press, Honolulu.Google Scholar
  22. ——— 2006. Women’s war: An update of the literature on Iban textiles. Borneo Research Bulletin 37:182–92.Google Scholar
  23. Heyne, K. 1987. Tumbuhan Berguna Indonesia. Vols I– IV. Yayasan Sarana Wana Jaya, Jakarta.Google Scholar
  24. Jacobs, A. M. 1881. Process of manufacturing oleaginous mordants. U.S. Patent Office letter 245633, 16 August 1881.Google Scholar
  25. Jansen, S., M. R. Broadly, E. Robbrecht, and E. Smets. 2002. Aluminum hyperaccumulation in angiosperms: A review of its phylogenetic significance. The Botanical Review 68(2):235–269.CrossRefGoogle Scholar
  26. ———, T. Watanabe, S. Dessein, E. Smets, and E. Robbrecht. 2003. A comparative study of metal levels in leaves of some Al–accumulating Rubiaceae. Annals of Botany 91:657–663.PubMedCrossRefGoogle Scholar
  27. ———, ———, P. Caris, K. Geuten, F. Lens, N. Pyck, and E. Smets. 2004. The distribution and phylogeny of aluminium accumulating plants in the Ericales. Plant Biology 6:498–505.PubMedCrossRefGoogle Scholar
  28. Jones, G. P., T. G. Watson, A. J. Sinclair, A. Birkett, N. Dunt, S. S. D. Nair, and S. Y. Tonkin. 1999. Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450. Asia Pacific Journal of Clinical Nutrition 8:211–215.CrossRefGoogle Scholar
  29. Kajitani, N. 1979. Traditional dyes in Indonesia. Pages 305–325 in M. Gittinger, ed., Indonesian textiles, proceedings of the roundtable on museum textiles. The Textile Museum, Washington, D.C.Google Scholar
  30. Kettering, J. and C. Conrad. 1942. Quantitative determination of cellulose in raw cotton fiber. Simple and rapid semimicro method. Industrial Engineering and Chemical Analysis 14:432–434.CrossRefGoogle Scholar
  31. Koji, T. 2002. Kemiri (Aleurites moluccana) and forest resource management in eastern Indonesia: An eco–historical perspective. Asian and African Area Studies 2:5–23.Google Scholar
  32. Kongdee, A. and T. Bechtold. 2009. Influence of ligand type and solution pH on heavy metal ion complexation in cellulosic fiber: Model calculations and experimental results. Cellulose 16:53–63.CrossRefGoogle Scholar
  33. Lemmens, R. H. M. J. and N. Wulijarni–Soetjipto, eds. 1992. Dye and Tannin–Producing Plants (Prosea 3): No 3 (PROSEA—plant resources of South East Asia). Kerkwerve, The Netherlands: Backhuys Publishers.Google Scholar
  34. Linggi, D. A. M. 2001. Ties that bind: Iban Ikat weaving. Tun Jugah Foundation, Kuching.Google Scholar
  35. MacFoy, C. 2004. Ethnobotany and sustainable utilization of natural dye plants in Sierra Leone. Economic Botany 58:66–76.CrossRefGoogle Scholar
  36. Martin, G. J. 1995. Ethnobotany. Earthscan, London.Google Scholar
  37. Maxwell, R. 1990. Textiles of Southeast Asia; Tradition, trade and transformation. Periplus, Singapore.Google Scholar
  38. McClatchey, W. 2003. Diversity of growth forms and uses in the Morinda citrifolia L. complex. In: Proceedings of the 2002 Hawai‘i Noni Conference, ed., S. C. Nelson, 5–10. Honolulu, Hawaii: University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources. http://www.ctahr.hawaii.edu/noni/downloads/noni5_10.pdf (12 March 2011).
  39. Mohanty, B. C., K. V. Chandramouli, and H. D. Naik. 1987. Natural dyeing processes of India. Studies in Contemporary Textile Crafts of India, Calico Museum of Textiles. H. N. Patel, Ahmedabad.Google Scholar
  40. Nooteboom, H. P. 1974. Symplocaceae. In: Flora Malesiana, Vol. 8(1), ed. C. G. G. J. van Steenis, 204–274. Alphen aan den Rijn, The Netherlands: Sitjoff and Nordhoff International Publishers.Google Scholar
  41. ——— 1975. Revision of the Symplocaceae of the Old World New Caledonia excepted. Leiden Botanical Series Vol I. Universitaire Pers, Leiden.Google Scholar
  42. Onslow, M. W. 1921. Oxidising Enzymes. IV. The Distribution of Oxidising Enzymes among the Higher Plants. Biochemical Journal 15:107–112PubMedGoogle Scholar
  43. Palocci, C., F. Florillo, C. Belsito, E. Cemia, and G. Pasqua. 2005. Plant latex lipases: Physiological role and applications. Recent Research Developments in Biochemistry 6:87–99.Google Scholar
  44. Rumphius, G. E. 1743. Herbarium amboinense (Het Amboisch Kruid–boek), Vol. 3, ed., J. Burmannus. Amstelaedami : Apud Fransicum Changuion, Joannem Catuffe, Hermanum Uytwerf.Google Scholar
  45. Suksamrarn, A., M. Buaprom, U. Udtip, N. Nuntawong, R. Haritakun, and S. Kanokmedhakul. 2005. Antimycobacterial and antiplasmodial unsaturated carboxylic acid from the twigs of Scleropyrum wallichianum. Chemical and Pharmaceutical Bulletin 53:1327–1329.CrossRefGoogle Scholar
  46. Üstun, G., L. Kent, N. Çekin, and H. Civelekoglu. 1990. Investigation of the technological properties of Nigella sativa (black cumin) seed oil. Journal of the American Oil Chemists Society 67:958–960.CrossRefGoogle Scholar
  47. Verheijen, J. A. J. 1990. SVD, Dictionary of Plant Names in the Lesser Sunda Islands (Pacific Linguistics Series D–83). Department of Linguistics Research School of Pacific Studies, The Australian National University, Canberra.Google Scholar
  48. Villeneuve, P., M. Pina, A. Skarbek, J. Graille, and T. A. Foglia. 1997. Specificity of Carica papaya latex in lipase–catalyzed interesterification reactions. Biotechnology Techniques 11:91–94.CrossRefGoogle Scholar
  49. Von Faber, F. C. 1925. Untersuchungen uber die Physiologie der javanischen Solfataren–Pflanzen. Flora 118:89–110.Google Scholar
  50. YPBB. 2008. Pages 1–34 Hasil Lokakarya Pengelolaan Hutan Adat Tendambepa. Yayasan Pecinta Budaya Bebali, Ubud, Indonesia.Google Scholar

Copyright information

© The New York Botanical Garden 2011

Authors and Affiliations

  • Anthony B. Cunningham
    • 1
    • 2
  • I. Made Maduarta
    • 3
  • Jean Howe
    • 4
  • W. Ingram
    • 4
  • Steven Jansen
    • 5
  1. 1.School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  2. 2.People and Plants InternationalFremantleAustralia
  3. 3.Yayasan Pecinta Budaya BebaliBaliIndonesia
  4. 4.Threads of Life: Indonesian Textile Arts CenterBaliIndonesia
  5. 5.Institute for Systematic Botany and EcologyUlm UniversityUlmGermany

Personalised recommendations