Economic Botany

, Volume 65, Issue 1, pp 1–12 | Cite as

Homegardens on Amazonian Dark Earths, Non-anthropogenic Upland, and Floodplain Soils along the Brazilian Middle Madeira River Exhibit Diverging Agrobiodiversity1

  • James A. FraserEmail author
  • André B. Junqueira
  • Charles R. Clement


Homegardens on Amazonian Dark Earths, Non-anthropogenic Upland, and Floodplain Soils along the Brazilian Middle Madeira River Exhibit Diverging Agrobiodiversity. We test the hypothesis that the agrobiodiversity associated with homegardens on three different soils—upland Amazonian Dark Earths (ADE) and Oxisols (OX), and Fluvent Entisols (FL)—commonly found along the middle Madeira River in the municipality of Manicoré, Amazonas State, Brazil, is different due to the contrasting biotic, abiotic, and cultural settings specific to each of these soils. Using data from interviews with 63 farmers about food and utility species, we compare structural and floristic characteristics of homegarden agrobiodiversity. The density of individuals is higher on ADE than on the other soils (mean ± standard deviation: 715 ± 363 on ADE, 474 ± 283 on OX, 642 ± 399 on FL). ADE and OX have higher species richness (28.2 ± 5.6 on ADE, 25 ± 3.7on OX, 23.6 ± 5 on FL), while ADE and FL have a greater degree of domestication (2 ± 0.6 on ADE, 1.3 ± 0.5 on OX, 2.3 ± 0.6 on FL). ADE and OX have greater proportions of richness, density, and coverage composed of South American species, while FL has greater proportions of richness and density composed of Old World species. ADE has higher proportions of density and coverage of Mesoamerican species. Floristic composition is also different between soils: ADE occupies an intermediate position, composed of species associated with each of the other soil types and species that are most common on ADE. These differences in agrobiodiversity emerge through the interaction of human agency, plant responses, and the unique properties of soils in relation to socioeconomic and historical trajectories over time.

Key Words

Terra Preta de Índio domesticated species anthropogenic soils agroforestry 

Quintais agroflorestais em solos antrópicos, solos não-antrópicos na terra firme e em solos de várzea ao longo do médio Rio Madeira divergem quanto à agrobiodiversidade. Nós testamos a hipótese de que a agrobiodiversidade associada a quintais em três diferentes tipos de solo—solos antrópicos (ADE), latossolos (OX) na terra firme, e gleissolos de várzea (FL)—comumente encontrados ao longo do médio Rio Madeira no município de Manicoré, Amazonas, Brasil, é diferente devido às características bióticas, abióticas e culturais específicas de cada um desses solos. Utilizando dados de entrevistas com 63 agricultores sobre espécies comestíveis e úteis nós comparamos características florísticas e estruturais da agrobiodiversidade de quintais agroflorestais. A densidade de indivíduos é maior em ADE do que em outros tipos de solo (média ± desvio padrão: 715 ± 363 em ADE, 474 ± 283 em OX, 642 ± 399 em FL). ADE e OX possuem maior riqueza de espécies (28.2 ± 5.6 em ADE, 25 ± 3.7em OX, 23.6 ± 5 em FL), enquanto ADE e FL possuem um maior grau de domesticação (2 ± 0.6 em ADE, 1.3 ± 0.5 em OX, 2.3 ± 0.6 em FL). ADE e OX têm maiores proporções de riqueza, densidade e cobertura compostas de espécies Sul-Americanas, enquanto FL têm maiores proporções de riqueza e densidade compostas de espécies do Velho Mundo. ADE possui maiores proporções de densidade e cobertura de espécies Mesoamericanas. A composição florística também é diferente entre os tipos de solo: ADE ocupa uma posição intermediária, composta por espécies associadas a cada um dos outros tipos de solo e espécies que são mais comuns em ADE. Essas diferenças na agrobiodiversidade emergem a partir da interação entre ação humana, respostas das plantas e propriedades dos solos em relação às trajetórias sócio-econômicas e históricas ao longo do tempo.



This paper draws on aspects of Fraser’s doctoral research, funded by the Leverhulme Trust (Grant F/00 230/W), under the auspices of a scientific expedition (EXC 022/05) granted by the Brazilian National Research Council (CNPq). We thank Luke Parry for help with statistics.

Literature Cited

  1. Abraão, M. B., B. W. Nelson, J. C. Baniwa, D. W. Yu, and G. H., Jr. Shepard. 2008. Ethnobotanical ground-truthing: Indigenous knowledge, floristic inventories and satellite imagery in the upper Rio Negro, Brazil. Journal of Biogeography 35(12):2237–2248.CrossRefGoogle Scholar
  2. Adams, C., R. Murrieta, W. Neves, and M. Harris, eds. 2009. Amazon peasant societies in a changing environment: Political ecology, invisibility and modernity in the rainforest. Springer, New York.Google Scholar
  3. Alden, D. 1976. The significance of cacao production in the Amazon region during the late colonial period: An essay in comparative economic history. Proceedings of the American Philosophical Society 120:103–135.Google Scholar
  4. Alexiades, M., ed. 1996. Selected guidelines for ethnobotanical research: A field manual (Advances in Economic Botany, Vol. 10). The New York Botanical Garden Press, New York.Google Scholar
  5. Andrade, E. B. 1982. Relatório de expedição para coleta de germoplasma de caiaué (Elaeis oleifera [H. B. K.] Cortés) na Amazônia Brasileira. EMBRAPA/CNPSD, Manaus.Google Scholar
  6. Balée, W. and A. Gély. 1989. Managed forest succession in Amazonia: The Ka’apor case. Pages 129–158 in D. A. Posey and W. Balée, eds., Resource management in Amazonia: Indigenous and folk strategies. The New York Botanical Garden Press, New York.Google Scholar
  7. Balslev, H., J. Luteyn, B. Ollgard, and L. B. Holm-Nielsen. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonían Ecuador. Opera Botanica 92:37–57.Google Scholar
  8. Barcelos, E. 1986. Características genético-ecológicas de populações naturais de caiaué (Elaeis oleifera [H. B. K.] Cortés) na Amazônia Brasileira. Unpublished M.Sc. thesis, Instituto Nacional de Pesquisas da Amazônia/Fundação Universidade do Amazonas, Manaus.Google Scholar
  9. Berlin, B. 1992. Ethnobiological classification: Principles of categorization of plants and animals in traditional societies. Princeton University Press, Princeton.Google Scholar
  10. Bhagwat, S. A., K. J. Willis, H. J. B. Birks, and R. J. Whittaker. 2008. Agroforestry: A refuge for tropical biodiversity? Trends in Ecology and Evolution 23:261–267.PubMedCrossRefGoogle Scholar
  11. Bryman, A. 2008. Social research methods, 3rd edition. Oxford University Press, Oxford.Google Scholar
  12. Buol, S. W., R. J. Southard, R. C. Graham, and P. A. McDaniel. 2003. Soil genesis and classification. Iowa State Press, Ames.Google Scholar
  13. Clement, C. R. 1999. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Economic Botany 53(2):188–202.CrossRefGoogle Scholar
  14. ——— 2004. Fruits. Pages 77–95 in G. T. Prance and M. Nesbitt, eds., The cultural history of plants. Routledge, London.Google Scholar
  15. ———, J. M. McCann, and N. J. Smith. 2003. Agrobiodiversity in Amazonia and its relationship with dark earths. Pages 159–178 in J. Lehmann et al., eds., Amazonian dark earths: Origin, properties, and management. Kluwer, Dordrecht.Google Scholar
  16. Eyzaguirre, P. B. and O. F. Linares, eds. 2004. Home gardens and agrobiodiversity. Smithsonian Books, Washington, D.C.Google Scholar
  17. Fernandes, E. C. M. and P. K. R. Nair. 1986. An evaluation of the structure and function of tropical homegardens. Agricultural Systems 21:279–310.CrossRefGoogle Scholar
  18. Fraser, J. A. 2009. Amazonian dark earths and caboclo subsistence on the middle Madeira River, Brazil. Unpublished Ph.D. thesis, University of Sussex.Google Scholar
  19. ——— 2010. Caboclo horticulture and Amazonian dark earths along the middle Madeira River, Brazil. Human Ecology 38(5):651–662.CrossRefGoogle Scholar
  20. ———, T. Cardoso, A. B. Junqueira, N. Falcão, and C. R. Clement. 2009. Historical ecology and dark earths in whitewater and blackwater landscapes: Comparing the middle Madeira and lower Negro Rivers. Pages 229–264 in W. I. Woods et al., eds., Terra Preta Nova: Wim Sombroek’s vision. Springer, Berlin.CrossRefGoogle Scholar
  21. German, L. A. 2003. Ethnoscientific understandings of Amazonian dark earths. Pages 179–201 in J. Lehmann et al., eds., Amazonian dark earths: Origin, properties, and management. Kluwer, Dordrecht.Google Scholar
  22. Glaser, B. 2007. Prehistorically modified soils of Central Amazonia: A model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society of London: Series B 362:187–196.CrossRefGoogle Scholar
  23. Gotelli, N. J. and R. K. Colwell. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379–391.CrossRefGoogle Scholar
  24. Haugaasen, T. and C. A. Peres. 2006. Floristic, edaphic and structural characteristrics of flooded and unflooded forests in the lower Rio Purus region of Central Amazonia, Brazil. Acta Amazonica 36(1):25–36.CrossRefGoogle Scholar
  25. Hiraoka, M., S. Yamamoto, E. Matsumoto, S. Nakamura, I. Falesi, and A. Baena. 2003. Contemporary use and management of Amazonian dark earths. Pages 387–406 in J. Lehmann et al., eds., Amazonian dark earths: Origin, properties, and management. Kluwer, Dordrecht.Google Scholar
  26. Junqueira, A. B., C. R. Clement, and G. H., Jr. Shepard. 2010. Secondary forests on anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity. Biodiversity and Conservation 19(7):1933–1961.CrossRefGoogle Scholar
  27. Klüppel, M. P. 2006. Sistemas agrícolas e plantas medicinals em terras pretas de Índio da Amazônia Central. Unpublished M.Sc. thesis, Instituto Nacional de Pesquisas da Amazônia, Universidade Federal do Amazonas, Manaus.Google Scholar
  28. Kumar, B. M. and P. K. R. Nair, eds. 2006. Tropical homegardens: A time-tested example of sustainable agroforestry. Springer, Dortrecht.Google Scholar
  29. Lathrap, D. W. 1977. Our father the cayman, our mother the gourd: Spinden revisited or a unitary model for the emergence of agriculture in the New World. Pages 713–751 in C. E. Reed, ed., Origins of agriculture. Mouton, The Hague.Google Scholar
  30. Lehmann, J., D. C. Kern, L. German, J. McCann, G. C. Martins, and A. Moreira. 2003. Soil fertility and production potential. Pages 105–124 in J. Lehmann et al., eds., Amazonian dark earths: Origin, properties, and management. Kluwer, Dortrecht.Google Scholar
  31. León, J. 2000. Botánica de los cultivos tropicales. Editorial Agroamérica, Instituto Interamericano de Cooperación para la Agricultura, San José, Costa Rica.Google Scholar
  32. Major, J., C. R. Clement, and A. DiTommaso. 2005. Influence of market orientation on food plant diversity of farms located on Amazonian dark earth in the region of Manaus, Amazonas, Brazil. Economic Botany 59(1):77–86.CrossRefGoogle Scholar
  33. Martin, G. J. 1995. Ethnobotany: A methods manual. Chapman and Hall, London.Google Scholar
  34. Miller, R. P., J. R. Penn, and J. Van Leeuwen. 2006. Amazonian homegardens: Their ethnohistory and potential contribution to agroforestry development. Pages 43–60 in B. M. Kumar and P. K. R. Nair, eds., Tropical homegardens: A time-tested example of sustainable agroforestry. Springer, Dordrecht.Google Scholar
  35. Neves, E. G. 2008. Ecology, ceramic chronology and distribution, long-term history, and political change in the Amazonian floodplain. Pages 359–403 in H. Silverman and W. H. Isbell, eds., Handbook of South American archaeology. Springer, New York.CrossRefGoogle Scholar
  36. Oksanen, J. 2007. Standardization methods for community ecology. Documentation and User Guide for Package Vegan Version 1.8–6.Google Scholar
  37. Perrault-Archambault, M. and O. T. Coomes. 2008. Distribution of agrobiodiversity in home gardens along the Corrientes River, Peruvian Amazon. Economic Botany 62(2):109–126.CrossRefGoogle Scholar
  38. Platten, S. and T. Henfrey. 2009. The cultural keystone concept: Insights from ecological anthropology. Human Ecology 37(4):491–500.CrossRefGoogle Scholar
  39. Schmidt, M. J. 2010. Reconstructing tropical nature: Prehistoric and modern anthrosols (terra preta) in the Amazon rainforest, upper Xingu River, Brazil. Unpublished Ph.D. thesis, University of Florida.Google Scholar
  40. Sioli, H. 1984. The Amazon and its main affluents: Hydrography, morphology of the river courses, and river types. Pages 127–165 in H. Sioli, ed., The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. Junk Publishers, Dordrecht.Google Scholar
  41. Sokal, R. R. and F. J. Rohlf. 1995. Biometry: The principles and practice of statistics in biological research. W. H. Freeman and Co, New York.Google Scholar
  42. Veteto, J. R. and K. Skarbø. 2009. Sowing the seeds: Anthropological contributions to agrobiodiversity studies. Culture and Agriculture 31(2):73–87.CrossRefGoogle Scholar
  43. Woods, W. I., W. G. Teixeira, J. Lehmann, C. Steiner, A. M. G. A. WinklerPrins, and L. Rebellato, eds. 2009. Amazonian dark earths: Wim Sombroek’s vision. Springer, Berlin.Google Scholar

Copyright information

© The New York Botanical Garden 2010

Authors and Affiliations

  • James A. Fraser
    • 1
    Email author
  • André B. Junqueira
    • 2
  • Charles R. Clement
    • 2
  1. 1.Department of AnthropologyUniversity of SussexBrightonUK
  2. 2.Instituto Nacional de Pesquisas da AmazôniaCoordenação de Pesquisas em Ciências AgronômicasManaus, AmazonasBrazil

Personalised recommendations