American Journal of Potato Research

, Volume 97, Issue 1, pp 78–87 | Cite as

The Opposite Effect of Low Temperature on the Pho1a Starch Phosphorylase Gene Expression in Solanum tuberosum L. Tubers and Petota Species Leaves

  • Maria A. SluginaEmail author
  • Alexey A. Meleshin
  • Elena Z. Kochieva
  • Anna V. Shchennikova


Starch turnover is important for plant response to abiotic stresses and plastidic starch phosphorylase Pho1a is a key enzyme regulating starch metabolism. In this study, we identified Pho1a coding sequences in seven wild tuber-bearing potato species. In Solanum tuberosum cv. Nadezhda grown at normal conditions, Pho1a transcription was low; it was detected in stems, leaves, flowers, and roots. After harvest, Pho1a expression in tubers of 16 S. tuberosum cultivars was either absent or low but progressively increased during storage at +4 °C, which corresponded to an increase in the content of reducing sugars. In the leaves of both cultivated and wild potato species, exposure to short-term cold stress downregulated Pho1a expression, especially at night, and stimulated starch degradation, but there was no uniform diurnal pattern in Pho1a expression dynamics. These findings indicate that Pho1a may have different functions in storage and photosynthetic organs of potato.


Starch metabolism Wild potato species Plastidial starch phosphorylase Gene expression Cold stress Diurnal rhythm 


La renovación del almidón es importante para la respuesta de la planta a los agobios abióticos, y la fosforilasa plastídica del almidón Pho1a es una enzima clave para la regulación del metabolismo del almidón. En este estudio, identificamos secuencias de codificación de Pho1a en siete especies silvestres tuberíferas de papa. En Solanum tuberosum var. Nadezhda cultivada bajo condiciones normales, la transcripción de Pho1a fue baja; se detectó en tallos, hojas, flores y raíces. Después de la cosecha, la expresión de Pho1a en tubérculos de 16 variedades de S. tuberosum estuvo ausente o fue baja, pero aumentó progresivamente durante el almacenamiento a + 4 °C, lo que correspondió a un aumento en el contenido de azúcares reductores. En las hojas, tanto de las especies cultivadas como en las silvestres, expuestas a cortos períodos de agobio por frío, la expresión de Pho1a estuvo regulada a la baja, especialmente en la noche, y estimuló la degradación del almidón, pero no hubo un patrón diurno uniforme en la dinámica de expresión de la Pho1a. Estos nuevos conocimientos indican que Pho1a puede tener diferentes funciones en almacén y en los órganos fotosintéticos de la papa.



This work was supported by the Russian Foundation for Basic Research (grants No. 17-29-08017 and 18-29-07007), the Ministry of Science and Higher Education of the Russian Federation and FSTP of Agricultural Development in the RF for 2017 - 2025 (subprogram “Development of potato breeding and seed production in the Russian Federation”), and was performed using the experimental climate control facility (Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences). We thank Dr. Marina Chuenkova for assistance in professional editing of the English.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12230_2019_9758_MOESM1_ESM.xls (520 kb)
ESM 1 (XLS 520 kb)


  1. Albrecht, T., B. Greve, K. Pusch, J. Kossmann, P. Buchner, U. Wobus, and M. Steup. 1998. Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-specific antibodies. European Journal of Biochemistry 251 (1–2): 343–352.PubMedGoogle Scholar
  2. Albrecht, T., A. Koch, A. Lode, B. Greve, J. Schneider-Mergener, and M. Steup. 2001. Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: Expression analysis and immunochemical characterization. Planta 213: 602–613.PubMedGoogle Scholar
  3. Bernfeld, P., and A. Meutemedian. 1948. Isophosphorylase and the formation of branched polysaccharides. Nature 162: 618–618.PubMedGoogle Scholar
  4. Brisson, N., H. Giroux, M. Zollinger, A. Camirand, and C. Simard. 1989. Maturation and subcellular compartmentation of potato starch phosphorylase. The Plant Cell 1: 559–566.PubMedPubMedCentralGoogle Scholar
  5. Buchner, P., L. Borisjuk, and U. Wobus. 1996. Glucan phosphorylases in Vicia faba L.: Cloning, structural analysis and expression patterns of cytosolic and plastidic forms in relation to starch. Planta 199: 64–73.PubMedGoogle Scholar
  6. Camirand, A., B. St-Pierre, C. Marineau, and N. Brisson. 1990. Occurrence of a copia-like transposable element in one of the introns of the potato starch phosphorylase gene. Molecular Genetics and Genomics 224: 33–39.Google Scholar
  7. Chen, H.-M., S.-C. Chang, C.-C. Wu, T.-S. Cuo, J.-S. Wu, and R.-H. Juang. 2002. Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiologia Plantarum 114: 506–515.PubMedGoogle Scholar
  8. Choi, Y., G.E. Sims, S. Murphy, J.R. Miller, and A.P. Chan. 2012. Predicting the functional effect of amino acid substitutions and indels. PLoS One 7: e46688. Scholar
  9. Cuesta-Seijo, J.A., C. Ruzanski, K. Krucewicz, S. Meier, P. Hägglund, B. Svensson, and M.M. Palcic. 2017. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 12: e0175488. Scholar
  10. d’Hulst, C., V. Planchot, and M. Chatterjee. 2007. Method for improving plants. US Patent Application 20070209088.Google Scholar
  11. Dauvillée, D., V. Chochois, M. Steup, S. Haebel, N. Eckermann, G. Ritte, J.-P. Ral, C. Colleoni, G. Hicks, F. Wattebled, P. Deschamps, C. d’Hulst, L. Liénard, L. Cournac, J.-L. Putaux, D. Dupeyre, and S.G. Ball. 2006. Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. The Plant Journal 48: 274–285.PubMedGoogle Scholar
  12. Duwenig, E., M. Steup, and J. Kossmann. 1997. Induction of genes encoding plastidic phosphorylase from spinach (Spinacia oleracea L.) and potato (Solanum tuberosum L.) by exogenously supplied carbohydrates in excised leaf discs. Planta 203: 111–120.PubMedGoogle Scholar
  13. Fettke, J., L. Leifels, H. Brust, K. Herbst, and M. Steup. 2012. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature. Journal of Experimental Botany 63: 3011–3029.PubMedPubMedCentralGoogle Scholar
  14. Feugier, F.G., and A. Satake. 2013. Dynamical feedback between circadian clock and sucrose availability explains adaptive response of starch metabolism to various photoperiods. Frontiers in Plant Science 3: 305. Scholar
  15. Green, D., and P. Stumpf. 1942. Starch phosphorylase of potato. Journal of Biological Chemistry 142: 355–366.Google Scholar
  16. Gupta, A.K., and N. Kaur. 2005. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences 30: 761–776.PubMedGoogle Scholar
  17. Hanes, C.S. 1940. The reversible formation of starch from glucose-1-phosphate catalysed by potato phosphorylase. Proceedings of the Royal Society of London B: Biological Sciences 129: 174–208.Google Scholar
  18. Higgins, J.E., B. Kosar-Hashemi, Z. Li, C.A. Howitt, O. Larroque, B. Flanagan, M.K. Morell, and S. Rahman. 2013. Characterization of starch phosphorylases in barley grains. Journal of the Science of Food and Agriculture 93: 2137–2145.PubMedGoogle Scholar
  19. Hwang, S.-K., A. Nishi, H. Satoh, and T.W. Okita. 2010. Rice endosperm-specific plastidial alpha-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Archives of Biochemistry and Biophysics 495: 82–92.PubMedGoogle Scholar
  20. Hwang, S.K., K. Koper, H. Satoh, and T.W. Okita. 2016a. Rice endosperm starch Phosphorylase (Pho1) assembles with Disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of Malto-oligosaccharides. The Journal of Biological Chemistry 291 (38): 19994–20007.PubMedPubMedCentralGoogle Scholar
  21. Hwang, S.K., S. Singh, B. Cakir, H. Satoh, and T.W. Okita. 2016b. The plastidial starch phosphorylase from rice endosperm: Catalytic properties at low temperature. Planta 243: 999–1009.PubMedGoogle Scholar
  22. Kelley, L.A., S. Mezulis, C.M. Yates, M.N. Wass, and M.J. Sternberg. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10: 845–858.PubMedPubMedCentralGoogle Scholar
  23. Kozlowski, L.P. 2016. IPC – Isoelectric Point Calculator. Biology Direct 11: 55. Scholar
  24. Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.PubMedGoogle Scholar
  25. Lin, C.T., K.W., Yeh, P.D., Lee, and J.C. Su. 1991. Primary Structure of Sweet Potato Starch Phosphorylase Deduced from its cDNA Sequence. Plant Physiology 95 (4): 1250–1253.PubMedPubMedCentralGoogle Scholar
  26. Lin, Y.C., S.C. Chang, and R.H. Juang. 2017. Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism. PLoS One 12 (5): e0177115. Scholar
  27. Lopez-Pardo, R., J.I.R. de Galarreta, and E. Ritter. 2013. Selection of housekeeping genes for qRT-PCR analysis in potato tubers under cold stress. Molecular Breeding 31 (1): 39–45.Google Scholar
  28. Machida-Hirano, R. 2015. Diversity of potato genetic resources. Breeding Science 65: 26–40.PubMedPubMedCentralGoogle Scholar
  29. MacNeill, G.J., S. Mehrpouyan, M.A.A. Minow, J.A. Patterson, I.J. Tetlow, and M.J. Emes. 2017. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. Journal of Experimental Botany 68 (16): 4433–4453.PubMedGoogle Scholar
  30. Nakano, K., and T. Fukui. 1986. The complete amino acid sequence of potato alpha-glucan phosphorylase. The Journal of Biological Chemistry 261: 8230–8236.PubMedGoogle Scholar
  31. Newgard, C.B., P.K. Hwang, and R.J. Fletterick. 1989. The family of glycogen phosphorylases: Structure and function. Critical Reviews in Biochemistry and Molecular Biology 24: 69–99.PubMedGoogle Scholar
  32. Orawetz, T., I. Malinova, S. Orzechowski, and J. Fettke. 2016. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature. Plant Physiology and Biochemistry 100: 141–149.PubMedGoogle Scholar
  33. Priess, J., and C. Levi. 1980. Starch biosynthesis and degradation. In The biochemistry of plants, ed. J. Preiss, 3: 371–423. New York: Academic Press.Google Scholar
  34. Rathore, R.S., N. Garg, S. Garg, and A. Kumar. 2009. Starch phosphorylase: Role in starch metabolism and biotechnological applications. Critical Reviews in Biotechnology 29 (3): 214–224.PubMedGoogle Scholar
  35. Rosa, M., C. Prado, G. Podazza, R. Interdonato, J.A. González, M. Hilal, and F.E. Prado. 2009. Soluble sugars--metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior 4: 388–393.Google Scholar
  36. Satoh, H., K. Shibahara, T. Tokunaga, A. Nishi, M. Tasaki, S.-K. Hwang, T.W. Okita, N. Kaneko, N. Fujita, M. Yoshida, Y. Hosaka, A. Sato, Y. Utsumi, T. Ohdan, and Y. Nakamura. 2008. Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. The Plant Cell 20: 1833–1849.PubMedPubMedCentralGoogle Scholar
  37. Schreiber, L., A.C. Nader-Nieto, E.M. Schönhals, B. Walkemeier, and C. Gebhardt. 2014. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3: Genes, Genomes, Genetics 4: 1797–1811.Google Scholar
  38. Schupp, N., and P. Ziegler. 2004. The relation of starch phosphorylases to starch metabolism in wheat. Plant and Cell Physiology 45: 1471–1484.PubMedGoogle Scholar
  39. Sonnewald, S., and U. Sonnewald. 2014. Regulation of potato tuber sprouting. Planta. 239 (1): 27–38.PubMedGoogle Scholar
  40. Sonnewald, U., A. Basner, B. Greve, and M. Steup. 1995. A second L-type isozyme of potato glucan phosphorylase: Cloning, antisense inhibition and expression analysis. Plant Molecular Biology 27: 567–576.PubMedGoogle Scholar
  41. St-Pierre, B., C. Bertrand, A. Camirand, M. Cappadocia, and N. Brisson. 1996. The starch phosphorylase gene is subjected to different modes of regulation in starch-containing tissues of potato. Plant Molecular Biology 30 (6): 1087–1098.PubMedGoogle Scholar
  42. Tang, X., N. Zhang, H. Si, and A. Calderón-Urrea. 2017. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods 13: 85.PubMedPubMedCentralGoogle Scholar
  43. Thalmann, M., and D. Santelia. 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytologist 214: 943–951.PubMedGoogle Scholar
  44. Tickle, P., M.M. Burrell, S.A. Coates, M.J. Emes, I.J. Tetlow, and C.G. Bowsher. 2009. Characterization of plastidic starch phosphorylase in Triticum aestivum L. endosperm. Journal of Plant Physiology 166: 1465–1478.PubMedGoogle Scholar
  45. Van Harsselaar, J.K., J. Lorenz, M. Senning, U. Sonnewald, and S. Sonnewald. 2017. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 18 (1): 37. Scholar
  46. Young, G.-H., H.-M. Chen, C.-T. Lin, K.-C. Tseng, J.-S. Wu, and R.-H. Juang. 2006. Sitespecific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 223: 468–478.PubMedGoogle Scholar
  47. Yu, Y., H.H. Mu, B.P. Wasserman, and G.M. Carman. 2001. Identifcation of the maize amyloplast stromal 112-kD protein as a plastidic starch phosphorylase. Plant Physiology 125: 351–359.PubMedPubMedCentralGoogle Scholar
  48. Yue, C., H.L. Cao, L. Wang, Y.H. Zhou, Y.T. Huang, X.Y. Hao, Y.C. Wang, B. Wang, Y.J. Yang, and X.C. Wang. 2015. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology 88 (6): 591–608.PubMedGoogle Scholar
  49. Zeeman, S.C., D. Thorneycroft, N. Schupp, A. Chapple, M. Weck, H. Dunstan, P. Haldimann, N. Bechtold, A.M. Smith, and S.M. Smith. 2004a. The role of plastidial α-glucan phosphorylase in starch degradation and tolerance of abiotic stress in Arabidopsis leaves. Plant Physiology 135: 849–858.PubMedPubMedCentralGoogle Scholar
  50. Zeeman, S.C., D. Thorneycroft, N. Schupp, A. Chapple, M. Weck, H. Dunstan, P. Haldimann, N. Bechtold, A.M. Smith, and S.M. Smith. 2004b. Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology 135: 849–858.PubMedPubMedCentralGoogle Scholar
  51. Zeeman, S., S. Smith, and A. Smith. 2007. The diurnal metabolism of leaf starch. Biochemical Journal 401: 13–28.PubMedGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  • Maria A. Slugina
    • 1
    Email author
  • Alexey A. Meleshin
    • 2
  • Elena Z. Kochieva
    • 1
  • Anna V. Shchennikova
    • 1
  1. 1.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Lorch Potato Research Institutepos. KraskovoRussia

Personalised recommendations