American Journal of Potato Research

, Volume 97, Issue 1, pp 63–77 | Cite as

Evaluation of Cooked Flavor for Fifteen Potato Genotypes and the Correlation of Sensory Analysis to Instrumental Methods

  • Raven A. Bough
  • David G. Holm
  • Sastry S. JayantyEmail author


Fifteen potato genotypes were evaluated for flavor and related components using sensory analysis, metabolite analysis, and an instrumental measurement of hardness over two growing seasons. Bake and boil cooking methods were also compared. Several sensory attributes had a significant variation in both years, where positive or negative correlations to overall quality determined desirable or undesirable attributes, respectively. Desirable attributes in both years were potato-like and mealy texture, while undesirable attributes were bitter, earthy, and other off-flavors. Significant desirable attributes limited to a single season were buttery, creamy, and sweet. Significant undesirable attributes restricted to a single season were aroma intensity and woody. Relative amounts of metabolites across genotype and cooking methods were significantly different for 14 metabolites in 2015 and 30 metabolites in 2016. Metabolites consisted of hydrocarbons, terpenes, alcohols, an acid, furans, aldehydes, ketones, as well as halogenic, nitrogenous, and sulfurous compounds. Flavor is an inherently complex phenotypic trait that is difficult to assess without subjective sensory analysis, however, flavor biomarkers may enable objective high-throughput flavor phenotyping. Candidate metabolites for potato flavor biomarkers found in this study include furfural for buttery, potato-like, and umami; 2-ethylfuran, 2-pentylfuran, isomenthone, methional, 2-phenylacetaldehyde, dimethyl trisfulfide, and 2,2,3,4-tetramethylpentane for potato-like; 3-methylpentane for aroma intensity, bitter, earthy, woody, and other off-flavors; 2-methoxy-3-propan-2-ylpyrazine for aroma intensity; 3,4,5-trimethyl-2-cyclopenten-1-one for bitter; pentan-1-ol for earthy; 2-pentylfuran, (E)-hept-2-enal, pentanal, and (E)-2-methylpent-2-en-1-ol for woody; and 5-methylhexan-2-one for other off-flavors. Further, instrumental measurements of hardness were negatively correlated to mealy texture. Biomarkers, if validated, have the potential to enable objective flavor phenotyping, which would allow for more efficient flavor improvement within conventional breeding programs.


Sensory analysis Flavor metabolites Flavor biomarkers Hardness Flavor improvement Potato 


Se evaluaron 15 genotipos de papa para sabor y compuestos relacionados usando análisis sensorial, metabólico, y medida instrumental de dureza en dos ciclos de cultivo. También se compararon métodos de cocinar de horneado y hervido. Varios atributos sensoriales tuvieron una variación significativa en ambos años, donde las correlaciones positivas o negativas sobre la calidad en general determinaron atributos deseables o indeseables, respectivamente. Los atributos deseables en ambos años fueron textura harinosa tipo papa, mientras que los atributos indeseables fueron lo amargo, sabor a tierra y otros sabores. Los atributos deseables significativos limitados a un solo ciclo fueron textura mantecosa, cremosa y dulce. Los atributos indeseables significativos restringidos a un solo ciclo fueron la intensidad del aroma a madera. Las cantidades relativas de metabolitos a lo largo de genotipo y métodos de cocinado fueron significativamente diferentes para 14 metabolitos en 2015 y 30 metabolitos en 2016. Los metabolitos consistieron de hidrocarbones, terpenos, alcoholes, un ácido, furanos, aldehídos, cetonas, así como compuestos halogénicos, nitrogenosos y sulfurosos. El sabor es un carácter inherente fenotípico complejo que es dificil de evaluar sin un análisis sensorial subjetivo. No obstante, los biomarcadores de sabor pudieran permitir fenotipar el sabor objetivamente y de alto impacto. Los metabolitos candidatos como biomarcadores de sabor en papa encontrados en este estudio incluyen furfural para lo mantecoso tipo papa, y umami; 2-etilfuran, 2-pentilfuran, isomentona, metional, 2-fenilacetaldehido, dimetil trisfulfido, y 2,2,3,4-tetrametilpentano para tipo papa; 3-metilpentano para la intensidad de aroma, sabor amargo, a tierra, a madera, y otros sabores desagradables; 2-metoxi-3-propan-2-ilpirazina para la intensidad del aroma; 3,4,5-trimetil-2-ciclopenteno-1-uno para lo amargo; pentano-1-ol para el sabor a tierra; 2-pentilfuran, (E)-hepto-2-enal, pentanal, y (E)-2-metilpenta-2-en-1-ol para sabor madera; y 5-metilhexano-2-uno para otros sabores. Mas aun, las mediciones instrumentales de dureza estuvieron correlacionadas negativamente a la textura harinosa. Los biomarcadores, si se validan, tienen el potencial de permitir el fenotipado objetivo del sabor, lo que permitiría mejoramiento del sabor mas eficiente dentro de los programas convencionales de mejoramiento.



The Colorado Potato Administrative Committee Area II and the United States Department of Agriculture Specialty Crop Grant Initiative graciously funded this project. We kindly thank the sensory panelists for their effort and commitment. Supplemental technical support was provided by Caroline Gray, Mike Gray, Diganta Kalita, and Katrina Zavislan.

Supplementary material

12230_2019_9757_MOESM1_ESM.jpg (5.8 mb)
Figure S1 Pictures of potato genotypes evaluated in sensory and instrumental analyses (JPG 5925 kb)
12230_2019_9757_MOESM2_ESM.jpg (1.5 mb)
Figure S2 Colored hierarchical clustering analysis of sensory attributes and instrumental measurements with significant differences across treatment effects (1–3) by genotype per cooking method (A-D) in 2015 (JPG 1519 kb)
12230_2019_9757_MOESM3_ESM.jpg (2 mb)
Figure S3 Colored hierarchical clustering analysis of sensory attributes and instrumental measurements with significant differences across treatment effects (1–5) by genotype per cooking method (A-C) in 2016 (JPG 2001 kb)
12230_2019_9757_MOESM4_ESM.xlsx (108 kb)
ESM 4 (XLSX 108 kb)


  1. Blanda, G., L. Cerretani, P. Comandini, T.G. Toschi, and G. Lercker. 2010. Investigation of off-odour and off-flavour development in boiled potatoes. Food Chemistry 118: 283–290.CrossRefGoogle Scholar
  2. Dobson, G., T. Shepherd, S.R. Verrall, S. Conner, J.W. McNicol, G. Ramsay, L.V.T. Shepherd, H.V. Davies, and D. Stewart. 2008. Phytochemical diversity in tubers of potato cultivars and landraces using a gc-ms metabolomics approach. Journal of Agricultural and Food Chemistry 56: 10280–10291.CrossRefGoogle Scholar
  3. Duckham, S.C., A.T. Dodson, J. Bakker, and J.M. Ames. 2001. Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars. Food/Nahrung 45: 317–323.CrossRefGoogle Scholar
  4. Duckham, S.C., A.T. Dodson, J. Bakker, and J.M. Ames. 2002. Effect of cultivar and storage time on the volatile flavor components of baked potato. Journal of Agricultural and Food Chemistry 50: 5640–5648.CrossRefGoogle Scholar
  5. Ducreux, L.J., W.L. Morris, I.M. Prosser, J.A. Morris, M.H. Beale, F. Wright, T. Shepherd, G.J. Bryan, P.E. Hedley, and M.A. Taylor. 2008. Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes. Journal of Experimental Botany 59: 4219–4231.CrossRefGoogle Scholar
  6. Jansky, S.H. 2008. Genotypic and environmental contributions to baked potato flavor. American Journal of Potato Research 85: 455–465.CrossRefGoogle Scholar
  7. Jansky, S.H. 2010. Potato flavor. American Journal of Potato Research 87: 209–217.CrossRefGoogle Scholar
  8. Kebede, B.T., T. Grauwet, L. Mutsokoti, S. Palmers, L. Vervoort, M. Hendrickx, and A. Van Loey. 2014. Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International 56: 218–225.CrossRefGoogle Scholar
  9. Klee, H.J. 2010. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytologist 187: 44–56.CrossRefGoogle Scholar
  10. Lawless, H.T., and H. Heymann. 2010. Sensory evaluation of food: Principles and practices. 2nd ed. New York: Springer.CrossRefGoogle Scholar
  11. Longobardi, F., G. Casiello, D. Sacco, L. Tedone, and A. Sacco. 2011. Characterisation of the geographical origin of italian potatoes, based on stable isotope and volatile compound analyses. Food Chemistry 124: 1708–1713.CrossRefGoogle Scholar
  12. Maggio, A., P. Carillo, G.S. Bulmetti, A. Fuggi, G. Barbieri, and S. De Pascale. 2008. Potato yield and metabolic profiling under conventional and organic farming. European Journal of Agronomy 28: 343–350.CrossRefGoogle Scholar
  13. Majcher, M., and H.H. Jeleń. 2009. Comparison of suitability of spme, safe and sde methods for isolation of flavor compounds from extruded potato snacks. Journal of Food Composition and Analysis 22: 606–612.CrossRefGoogle Scholar
  14. Morris, W.L., and M.A. Taylor. 2019. Improving flavor to increase consumption. American Journal of Potato Research 96: 195–200.CrossRefGoogle Scholar
  15. Morris, W.L., T. Shepherd, S.R. Verrall, J.W. McNicol, and M.A. Taylor. 2010. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 71: 1765–1773.CrossRefGoogle Scholar
  16. Morris, W.L., L.J. Ducreux, T. Shepherd, E. Lewinsohn, R. Davidovich-Rikanati, Y. Sitrit, and M.A. Taylor. 2011. Utilisation of the mva pathway to produce elevated levels of the sesquiterpene alpha-copaene in potato tubers. Phytochemistry 72: 2288–2293.CrossRefGoogle Scholar
  17. Oruna-Concha, M.J., J. Bakker, and J.M. Ames. 2002a. Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking. Journal of the Science of Food and Agriculture 82: 1080–1087.CrossRefGoogle Scholar
  18. Oruna-Concha, M.J., J. Bakker, and J.M. Ames. 2002b. Comparison of the volatile components of eight cultivars of potato after microwave baking. LWT - Food Science and Technology 35: 80–86.CrossRefGoogle Scholar
  19. Roessner, U., L. Willmitzer, and A.R. Fernie. 2001. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiology 127: 749–764.CrossRefGoogle Scholar
  20. Sanches-Silva, A., J. Lopez-Hernandez, and P. Paseiro-Losada. 2005. Profiling flavor compounds of potato crisps during storage using solid-phase microextraction. Journal of Chromatography A 1064: 239–245.CrossRefGoogle Scholar
  21. Shepherd, T., G. Dobson, S.R. Verrall, S. Conner, D.W. Griffiths, J.W. McNicol, H.V. Davies, and D. Stewart. 2007. Potato metabolomics by gc–ms: What are the limiting factors? Metabolomics 3: 475–488.CrossRefGoogle Scholar
  22. Taylor, M.A. 2014. Potato flavor. In The potato: Botany, production and uses, ed. R. Navarre and M.J. Pavek, 345–360. Oxfordshire: CAB International.Google Scholar
  23. Ulrich, D., E. Hoberg, W. Neugebauer, H. Tiemann, and U. Darsow. 2000. Investigation of the boiled potato flavor by human sensory and instrumental methods. American Journal of Potato Research 77: 111–117.CrossRefGoogle Scholar
  24. Uri, C., Z. Juhasz, Z. Polgar, and Z. Banfalvi. 2014. A gc-ms-based metabolomics study on the tubers of commercial potato cultivars upon storage. Food Chemistry 159: 287–292.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.San Luis Valley Research Center (SLVRC), Department of Horticulture & Landscape ArchitectureColorado State UniversityCenterUSA

Personalised recommendations