American Journal of Potato Research

, Volume 96, Issue 6, pp 614–616 | Cite as

Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Lytic Bacteriophage Peat2

  • Melanie Kalischuk
  • John Hachey
  • Dallas Thomas
  • Dan Johnson
  • Lawrence KawchukEmail author
Short Communication


Pectobacterium atrosepticum is a pectolytic enterobacterium that causes blackleg in plants. Bacteriophage Peat2 was isolated from P. atrosepticum infected potato tissue and its genome sequenced. Analysis of the 48,659 bp genome revealed that Peat2 resembles the Myoviridae family Klebsiella pneumoniae bacteriophage JD001 and includes a CRISPR Cas 4 RecB-like nuclease. A lytic bacteriophage, Peat2 details provide important information for application as a biocontrol agent of disease caused by phytopathogenic P. atrosepticum.


Blackleg Pectobacterium atrosepticum Bacteriophage Myoviridae Biocontrol Cas 4 


Pectobacterium atrosepticum es una enterobacteria pectolítica que causa la pierna negra en plantas. Se aisló el Bacteriofago Peat2 de tejido de papa infectado con P. atrosepticum y se secuenció su genoma. El análisis del genoma de 48,659 pb reveló que Peat2 se asemeja al bacteriófago JD001 de Klebsiella pneumonia de la familia Myoviridae e incluye una nucleasa CRISPR Cas 4 tipo RecB. Los detalles del bacteiofago lítico Peat2 proporcionan información importante para su aplicación como un agente de biocontrol de la enfermedad causada por la fitopatogénica P. atrosepticum.



We thank Dr. F. Leggett for assistance with the transmission electron photomicrographs. Financial support for this work was provided in part by the Alberta Crop Industry Development Fund (ACIDF) grant 2014C008R and AAFC project J002220.


  1. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.CrossRefGoogle Scholar
  2. Blower, T.R., R. Chai, R. Przybilski, S. Chindhy, X. Fang, S.E. Kidman, H. Tan, B.F. Luisi, P.C. Fineran, and G.P.C. Salmond. 2017. Evolution of Pectobacterium bacteriophage ΦM1 to escape two bifunctional type III toxin-antitoxin and abortive infection systems through mutations in a single viral gene. Applied and Environmental Microbiology 83: e03229–e03216.CrossRefGoogle Scholar
  3. Delcher, A.L., D. Harmon, S. Kasif, O. White, and S.L. Salzberg. 1999. Improved microbial gene identification with glimmer. Nucleic Acids Research 27: 4636–4641.CrossRefGoogle Scholar
  4. Gill, J.J., A.M. Svircev, R. Smith, and A.J. Castle. 2003. Bacteriophages of Erwinia amylovora. Applied Microbiology and Biotechnology 90: 1333–1345.Google Scholar
  5. Hirata, H., M. Kashihara, T. Horiike, T. Suzuki, H. Dohra, O. Netsu, and S. Tsuyumu. 2016. Genome sequence of Pectobacterium carotovorum phage PPWS1, isolated from Japanese horseradish [Eutrema japonicum (Miq.) Koidz] showing soft-rot symptoms. Genome Announcements 4: e01625–e01615.CrossRefGoogle Scholar
  6. Horvath, P., and R. Barrangou. 2010. CRISPR/Cas, the immune system of bacteria and archea. Science 327: 167–170.CrossRefGoogle Scholar
  7. Kalischuk, M., J. Hachey, and L. Kawchuk. 2015. Complete genome sequence of phytopathogenic Pectobacterium atrospticum bacteriophage Peat1. Genome Announcements 3: e00760–e00715.CrossRefGoogle Scholar
  8. Lee, D.H., J.H. Lee, H. Shin, S. Ji, E. Roh, K. Jung, S. Ryu, J. Choi, and S. Heu. 2012a. Complete genome sequence of Pectobacterium carotovorum subsp. carotovorum bacteriophage My1. Journal of Virology 86: 11410–11411.CrossRefGoogle Scholar
  9. Lee, J.H., H. Shin, S. Ji, S. Malhotra, M. Kumar, S. Ryu, and S. Heu. 2012b. Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. Journal of Virology 86: 8899–8900.CrossRefGoogle Scholar
  10. Lim, J.A., H. Shin, D.H. Lee, S.W. Han, J.H. Lee, S. Ryu, and S. Heu. 2014. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1. Archives of Virology 159: 2185–2187.CrossRefGoogle Scholar
  11. Lowe, T.M., and S.R. Eddy. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955–964.CrossRefGoogle Scholar
  12. Marchler-Bauer, A., Y. Bo, L. Han, J. He, C.J. Lanczycki, S. Lu, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, F. Lu, G.H. Marchler, J.S. Song, N. Thanki, Z. Wang, R.A. Yamashita, D. Zhang, C. Zheng, L.Y. Geer, and S.H. Bryant. 2017. CDD/SPARCLE: Functional classification or proteins via subfamily domain architectures. Nucleic Acids Research 45: D200–D203.CrossRefGoogle Scholar
  13. Meier-Kolthoff, J.P., and M. Göker. 2017. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33: 3396–3404.CrossRefGoogle Scholar
  14. Seed, D., D.W. Lazinski, S.B. Calderwood, and A. Camilli. 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494: 489–491.CrossRefGoogle Scholar
  15. Zhang, Z., S. Schwartz, L. Wagner, and W. Miller. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 2000: 203–214.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Agriculture and Agri-Food CanadaLethbridgeCanada
  2. 2.Department of GeographyUniversity of LethbridgeLethbridgeCanada

Personalised recommendations