Advertisement

American Journal of Potato Research

, Volume 96, Issue 6, pp 552–563 | Cite as

QTL for Resistance to Globodera rostochiensis Pathotype Ro2 and G. pallida Pathotype Pa2/3 in Autotetraploid Potato

  • Jaebum Park
  • Christine A. Hackett
  • Louise-Marie Dandurand
  • Xiaohong WangEmail author
  • Walter S. De JongEmail author
Article
  • 98 Downloads

Abstract

The golden and white potato cyst nematodes (Globodera rostochiensis and G. pallida, respectively) are devastating quarantine pests of potatoes. The most widely distributed pathotype of the golden nematode, Ro1, is well controlled by the H1 resistance gene. A pathotype that overcomes H1, Ro2, has been detected on several farms in New York State. To map Ro2 resistance gene(s), two autotetraploid parental clones – NY121 (Ro2 resistant) and NY115 (susceptible) – along with 182 F1 offspring were genotyped with 8303 SNP markers, and the resistance of each clone to Ro2 was assessed with a greenhouse pot assay. Analysis with TetraploidSNPMap identified two Ro2 resistance QTL on chromosome 5: one QTL was located at 26 cM and explained 24.4% of the variation for resistance, while the second at 59 cM co-localized with a marker (57R) known to be tightly linked to H1 and explained 23.8% of the residual variation. Subsequent inoculation with G. pallida revealed that the chromosome 5 locus at 26 cM also conferred some resistance against pathotype Pa2/3, explaining 9.2% of the variation. A second QTL that increased susceptibility to Pa2/3 was located at 15 cM on chromosome 10 and explained 6.9% of the variation. The resistance gene(s) at 26 cM on chromosome 5 may correspond to previously described Grp1; a marker diagnostic for this region would be useful for applied potato breeding.

Keywords

Potato cyst nematode Globodera rostochiensis pathotype Ro2 G. pallida Pa2/3 TetraploidSNPMap 

Resumen

Los nematodos de quiste dorado y blanco (Globodera rostochiensis y G. pallida, respectivamente) son plagas cuarentenadas devastadoras de la papa. El patotipo mas ampliamente distribuido del nematodo dorado, Ro1, esta bien controlado por el gen de resistencia H1. Un patotipo que supera al H1, el Ro2, se detectó en varias siembras del Estado de Nueva York. Para mapear el gen(es) de resistencia de Ro2, se genotiparon dos clones parentales autotetraploides – NY121 (Ro2 resistente) y NY115 (susceptible) – al igual que la descendencia 182 F1, con marcadores SNP 8303, y se evaluó la resistencia de cada clon al Ro2 en un ensayo en invernadero. El análisis con el mapa SNP tetraploide identificó dos QTL de resistencia al Ro2 en el cromosoma 5: Se localizó un QTL a 28 cM y explicó 24.4% de la variación para la resistencia, mientras que el segundo, a 59 cM co47 localizado con un marcador (57R), se le conoce estar ligeramente ligado al H1, y explicó el 23.8% de la variación residual. Inoculación subsecuente con G pallida reveló que el locus del cromosoma 5 a 26 cM también confirió alguna resistencia contra el patotipo Pa2/3, explicando el 9.2% de la variación. Un segundo QTL que incrementó la susceptibilidad a Pa2/3 se localizó a 15 cM en el cromosoma 10 y explicó el 6.9% de la variación. El o los genes de resistencia a 26 cM en el cromosoma 5 pudieran corresponder a Grp 1 previamente descrito; un marcador de diagnóstico para esta región sería útil para el mejoramiento aplicado de la papa.

Notes

Acknowledgements

We thank Shuping Cheng and David Mark Thurston for excellent technical support and gratefully acknowledge funding provided by USDA National Institute of Food and Agriculture competitive grant 2015-69004-23634 and USDA-ARS specific cooperative agreement 58-8062-5-033.

Supplementary material

12230_2019_9745_MOESM1_ESM.xlsx (3.4 mb)
ESM 1 (XLSX 3505 kb)
12230_2019_9745_MOESM2_ESM.xlsx (28 kb)
ESM 2 (XLSX 27 kb)

References

  1. Animal and Plant Health Inspection Service (APHIS). 2018. Federal order; removal of portions of Cayuga, Seneca, Steuben, Suffolk, and Wayne counties in New York, as a quarantine area for the Golden nematode (Globodera rostochiensis). Online publication. https://www.aphis.usda.gov/plant_health/plant_pest_info/nematode/downloads/DA-2018-05.pdf
  2. Bakker, E., U. Achenbach, J. Bakker, J. van Vliet, J. Peleman, B. Segers, S. van der Heijden, P. van der Linde, R. Graveland, R. Hutten, H. van Eck, E. Coppoolse, E. van der Vossen, J. Bakker, and A. Goverse. 2004. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics 109: 146–152.PubMedGoogle Scholar
  3. Biryukova, V.A., A.A. Zhuravlev, S.B. Abrosimova, L.I. Kostina, L.M. Khromova, I.V. Shmyglya, N.N. Morozova, and S.N. Kirsanova. 2008. Use of molecular markers of potato Golden nematode resistance genes H1 and Gro1. Russian Agricultural Sciences 34: 365–368.Google Scholar
  4. Blok, V.C., and M.S. Phillips. 2012. Biological characterisation of Globodera pallida from Idaho. Nematology 14: 817–826.Google Scholar
  5. Boucher, A.C., B. Mimee, J. Montarry, S. Bardou-Valette, G. Bélair, P. Moffett, and E. Grenier. 2013. Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada. Molecular Phylogenetics and Evolution 69: 75–82.PubMedGoogle Scholar
  6. Brodie, B.B., and W.F. Mai. 1989. Control of the golden nematode in the United States. Annual Review of Phytopathology 27: 443–461.Google Scholar
  7. Brodie, B.B. 2001. Biology and distribution of potato cyst nematodes in North America and their economic impact on potato. Potato Association of America 78: 445.Google Scholar
  8. Brodie, B.B. 2003. The loss of expression of the H1 gene in Bt transgenic potatoes. American Journal of Potato Research 80: 135–139.Google Scholar
  9. Bryan, G.J., K. McLean, B. Pande, A. Purvis, C.A. Hackett, J.E. Bradshaw, and R. Waugh. 2004. Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Molecular Breeding 14: 105–116.Google Scholar
  10. Caromel, B., D. Mugniery, V. Lefebvre, S. Andrzejewski, D. Ellisseche, M.C. Kerlan, P. Rousselle, and F. Rousselle-Bourgeois. 2003. Mapping QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theoretical and Applied Genetics 106: 1517–1523.PubMedGoogle Scholar
  11. Caromel, B., D. Mugniery, M.C. Kerlan, S. Andrzejewski, A. Palloix, D. Ellisseche, F. Rousselle-Bourgeois, and V. Lefebvre. 2005. Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Molecular Plant-Microbe Interactions 18: 1186–1194.PubMedGoogle Scholar
  12. Chacόn, M.G., R.L. Plaisted, and B.B. Brodie. 1999. Inheritance of the resistance to Globodera Rostochiensis pathotype Ro2 in potato. American Journal of Potato Research 76: 345–349.Google Scholar
  13. Dalamu, V., R. Bhardwaj, R. Umamaheshwari, S.K. Sharma, T.A. Kaushik, B.P. Singh Joseph, and C. Gebhardt. 2012. Potato cyst nematode (PCN) resistance: Genes, genotypes, and markers – An update. SABRAO Journal of Breeding and Genetics 44: 202–228.Google Scholar
  14. Dalton, E., D. Griffin, T.F. Gallagher, N. de Vetten, and D. Milbourne. 2013. The effect of pyramiding two potato cyst nematode resistance loci to Globodera pallida Pa2/3 in potato. Molecular Breeding 31: 921–930.Google Scholar
  15. EFSA Panel on Plant Health. 2012. Scientific opinion on the risks to plant health posed by European versus non-European populations of the potato cyst nematodes Globodera pallida and Globodera rostochiensis. European Food Safety Authority Journal 10: 2644.Google Scholar
  16. Ellenby, C. 1952. Resistance to the potato root eelworm, Heterodera rostochiensis Wollenweber. Nature 170: 1016.PubMedGoogle Scholar
  17. Ellenby, C. 1954. Tuber-forming species and varieties of the genus Solanum tested for resistance to the potato root eelworm Heterodera rostochiensis Wollenweber. Euphytica 3: 195–202.Google Scholar
  18. Evans, K., and A.R. Stone. 1977. A review of the distribution and biology of the potato cyst nematodes Globodera rostochiensis and G. pallida. Proceedings of the National Academy of Sciences of the United States of America 23: 178–189.Google Scholar
  19. Fenwick, D.W. 1940. Methods for the recovery and counting of cysts of Heterodera schachtii from soil. Journal of Helminthology 18 (4): 155–172.Google Scholar
  20. Finkers-Tomczak, A., S. Danan, T. van Dijk, A. Beyene, L. Bouwman, H. Overmars, H. van Eck, A. Goverse, J. Bakker, and E. Bakker. 2009. High-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis. Theoretical and Applied Genetics 119: 165–173.PubMedGoogle Scholar
  21. Finkers-Tomczak, A., E. Bakker, J. de Boer, E. van der Vossen, U. Achenbach, T. Golas, S. Suryaningrat, G. Smant, J. Bakker, and A. Goverse. 2011. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). theoretical and Applied Genetics 122: 595–608.PubMedGoogle Scholar
  22. Galek, R., M. Rurek, W.S. De Jong, G. Pietkiewicz, H. Augustyniak, and E. Sawicka-Sienkiewicz. 2011. Application of DNA markers linked to the potato H1 gene conferring resistance to pathotype Ro1 of Globodera rostochiensis. Journal of Applied Genetics 52: 407–411.PubMedPubMedCentralGoogle Scholar
  23. Gebhardt, C., D. Mugniery, E. Ritter, F. Salamini, and E. Bonnel. 1993. Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theoretical and Applied Genetics 85: 541–544.PubMedGoogle Scholar
  24. Gebhardt, C., and J.P. Valkonen. 2001. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology 39: 79–102.PubMedGoogle Scholar
  25. Greco, N. 1988. Potato cyst nematodes: Globodera rostochiensis and G. pallida. Nematology circular No. 149. Gainesville: Florida department of agriculture and consumer services, division of plant industry.Google Scholar
  26. Hackett, C.A., K. McLean, and G.J. Bryan. 2013. Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One 8: 1–21.Google Scholar
  27. Hackett, C.A., J.E. Bradshaw, and G.J. Bryan. 2014. QTL mapping in autotetraploids using SNP dosage information. Theoretical and Applied Genetics 127: 1885–1904.PubMedGoogle Scholar
  28. Hackett, C.A., B. Boskamp, A. Vogogias, K. Preedy, and I. Milne. 2017. TetraploidSNPMap: Software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage data. Journal of Heredity 108: 438–442.  https://doi.org/10.1093/jhered/esx022.CrossRefGoogle Scholar
  29. Hafez, S.L., P. Sundararaj, Z.A. Handoo, A.M. Skantar, L.K. Carta, and D.J. Chitwood. 2007. First report of the pale cyst nematode, Globodera pallida, in the United States. Plant Disease 91: 325.PubMedGoogle Scholar
  30. Hamilton, J.P., C.N. Hansey, B.R. Whitty, K. Stoffel, A.N. Massa, A.V. Deynze, W.S. De Jong, D.S. Douches, and C.R. Buell. 2011. Single nucleotide polymorphism discovery in elite north American potato germplasm. BMC Genomics 12: 302.PubMedPubMedCentralGoogle Scholar
  31. Hockland, S., B. Niere, E. Grenier, V. Blok, M. Phillips, L.D. Nijs, G. Anthoine, J. Pickup, and N. Viaene. 2012. An evaluation of the implications of virulence in non-European populations of Globodera pallida and G. rostochiensis for potato cultivation in Europe. Nematology 14: 1–13.Google Scholar
  32. Holgado, R., and C. Magnusson. 2010. Management of PCN (Globodera spp.) populations under Norwegian conditions. Aspects of Applied Biology 103: 83–92.Google Scholar
  33. Karelov, A.V., L.A. Pylypenko, N.O. Kozub, R.O. Bondus, O.I. Boryzykh, I.A. Sozinov, Y.B. Blume, and A.A. Sozinov. 2013. Allelic state of the molecular marker for golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. Cytology and Genetics 47: 294–297.Google Scholar
  34. Kort, J., H. Ross, H.J. Rumpenhorst, and A.R. Sotne. 1977. An international scheme for identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochienesis and G. pallida. Nematologica 23: 333–339.Google Scholar
  35. Kreike, C.M., J.R. de Koning, J.H. Vinke, J.W. van Ooijen, C. Gebhardt, and W.J. Stiekema. 1993. Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1. Theoretical and Applied Genetics 87: 464–470.PubMedGoogle Scholar
  36. Kreike, C.M., J.R. de Koning, J.H. Vinke, J.W. van Ooijen, and W.J. Stiekema. 1994. Quantitatively inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theoretical and Applied Genetics 88: 764–769.PubMedGoogle Scholar
  37. Luo, Z.W., C.A. Hackett, J.E. Bradshaw, J.W. McNicol, and D.M. Millbourne. 2001. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics 157: 1369–1385.PubMedPubMedCentralGoogle Scholar
  38. Mahran, A., S. Turner, T. Martin, Q. Yu, S. Miller, and F. Sun. 2010. The golden potato cyst nematode Globodera rostochiensis Pathotype Ro1 in the saint-Amable regulated area in Quebec, Canada. Plant Disease 94: 1510.  https://doi.org/10.1094/PDIS-08-10-0584.CrossRefPubMedGoogle Scholar
  39. Milczarek, D., B. Flis, and A. Pizetakiewicz. 2011. Suitability of molecular markers for selection of potatoes resistance to Globodera spp. American Journal of Potato Research 88: 245–255.Google Scholar
  40. Mimee, B., M.-C. Duceppe, P.-Y. Veronneau, J. Lafond-Lapalme, M. Jean, F. Belzile, and G. Belair. 2015. A new method for studying population genetics of cyst nematodes based on Pool-Seq and genomewide allele frequency analysis. Molecular Ecology Resources 15: 1356–1365.  https://doi.org/10.1111/1755-0998.12412.CrossRefPubMedGoogle Scholar
  41. Moloney, C., D. Griffin, P.W. Jones, G.J. Bryan, K. McLean, J.E. Bradshaw, and D. Milbourne. 2010. Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802. Theoretical and Applied Genetics 120: 679–689.PubMedGoogle Scholar
  42. Nicol, J.M., S.J. Turner, D.L. Coyne, L. den Nijs, S. Hockland, and Z. Tahna Maafi. 2011. Current nematode threats to world agriculture. In Genomics and molecular genetics of plant–nematode interactions, ed. J. Jones, G. Gheysen, and C. Fenoll, 21–43. Dordrecht: Springer Netherlands.Google Scholar
  43. Niewöhner, J., F. Salamini, and C. Gebhardt. 1995. Development of PCR assays diagnostic for RFLP marker alleles closely linked to alleles Gro1 and H1, conferring resistance to the root cyst nematode Globodera rostochiensis in potato. Molecular Breeding 1: 65–78.Google Scholar
  44. Olsenand, O.A., and R.H. Mulvey. 1962. The discovery of golden nematode in Newfoundland. Canadian Plant Disease Survey 42: 253.Google Scholar
  45. Orchard, W.R. 1965. Occurrence of the golden nematode on Vancouver Island, British Columbia. Canadian Plant Disease Survey 45: 89–91.Google Scholar
  46. Paal, J., H. Henselewski, J. Muth, K. Meksem, C.M. Menéndez, F. Salamini, A. Ballvora, and C. Gebhardt. 2004. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. The Plant Journal 38: 285–297.PubMedGoogle Scholar
  47. Park, J.B., H. Yang, W.S. De Jong, and X. Wang. 2018. An evaluation of two H1-linked markers and their suitability for selecting Globodera rostochiensis resistant potatoes in the New York breeding program. American Journal of Potato Research 95: 170–177.Google Scholar
  48. Philis, I. 1991. Assessment of potato yield loss caused by the potato cyst nematode, Globodera rostochiensis. Nematologia Mediterranea 19: 191–194.Google Scholar
  49. Pineda, O., M.W. Bonierbale, R.L. Plaisted, B.B. Brodie, and S.D. Tanksley. 1993. Identification of RFLP markers linked to the H1 gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Genome 36: 152–156.PubMedGoogle Scholar
  50. Plaisted, R.L., D.E. Halseth, B.B. Brodie, S.A. Slack, J.B. Sieczka, B.J. Christ, K.M. Paddock, and M.W. Peck. 1998. Pike: A full season scab and golden nematode resistant chipstock variety. American Journal of Potato Research 75: 117–120.Google Scholar
  51. Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.Google Scholar
  52. Preedy, K.F., and C.A. Hackett. 2016. A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling. Theoretical and Applied Genetics 129: 2117–2132.PubMedGoogle Scholar
  53. Rak, K., P.C. Bethke, and J.P. Palta. 2017. QTL mapping of potato chip color and tuber traits within an autotetraploid family. Molecular Breeding 37: 15.Google Scholar
  54. Rice, S.L., B.S.C. Leadbeater, and A.R. Stone. 1985. Changes in cell structure in roots of resistant potatoes parasitized by potato cyst-nematodes. I. Potatoes with resistance gene H1 derived from Solanum tuberosum ssp. andigena. Physiological Plant Pathology 27: 219–234.Google Scholar
  55. Rouppe van der Voort, J., W. Lindeman, R. Folkertsma, R. Hutten, H. Overmars, E. van der Vossen, E. Jacobsen, and J. Bakker. 1998. A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theoretical and Applied Genetics 96: 654–661.Google Scholar
  56. Rouppe van der Voort, J., K. Kanyuka, E. van der Vossen, A. Bendahmane, P. Mooijman, R. Klein-Lankhorst, W. Stiekema, D. Baulcombe, and J. Bakker. 1999. Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species solanum tuberosum subsp. andigena CPC 1673 into cultivated potato. Molecular Plant-Microbe Interactions 12: 197–206.Google Scholar
  57. Schmitz Carley, C.A., J.J. Coombs, D.S. Douches, P.C. Bethke, J.P. Palta, R.G. Novy, and J.B. Endelman. 2017. Automated tetraploid genotype calling by hierarchical clustering. Theoretical and Applied Genetics 130: 717–726.PubMedGoogle Scholar
  58. Schultz, L., N.O.I. Cogan, K. Mclean, M.F.B. Dale, G.J. Bryan, J.W. Forster, and A.T. Slater. 2012. Evaluation and implementation of a potential diagnostic molecular marker for H1-conferred potato cyst nematode resistance in potato (Solanum tuberosum L.). Plant Breeding 131: 315–321.Google Scholar
  59. Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–464.  https://doi.org/10.1214/aos/1176344136.CrossRefGoogle Scholar
  60. Sharma, S.K., D. Bolser, J. de Boer, M. Sønderkær, W. Amoros, M.F. Carboni, J.M. D’Ambrosio, G. de la Cruz, A.D. Genova, D.S. Douches, M. Eguiluz, X. Guo, F. Guzman, C.A. Hackett, J.P. Hamilton, G. Li, Y. Li, R. Lozano, A. Maass, D. Marshall, D. Martinez, K. McLean, N. Mejía, L. Milne, S. Munive, I. Nagy, O. Ponce, M. Ramirez, R. Simon, S.J. Thomson, Y. Torres, R. Waugh, Z. Zhang, S. Huang, R.G.F. Visser, C.W.B. Bachem, B. Sagredo, S.E. Feingold, G. Orjeda, R.E. Veilleux, M. Bonierbale, J.M.E. Jacobs, D. Milbourne, D.M.A. Martin, and G.J. Bryan. 2013. Construction of reference chromosome-scale Pseudomolecules for potato: Integrating the potato genome with genetic and physical maps. G3: Genes|Genomes|Genetics 3: 2031–2047.PubMedPubMedCentralGoogle Scholar
  61. da Silva, W.L., J. Ingram, C.A. Hackett, J.J. Coombs, D. Douches, G.J. Bryan, W. De Jong, and S. Gray. 2017. Mapping loci that control tuber and foliar symptoms caused by PVY in autotetraploid potato (Solanum tuberosum L.). G3: Genes|genomes|genetics 7: 3587–3595.PubMedPubMedCentralGoogle Scholar
  62. Skantar, A.M., Z.A. Handoo, L.K. Carta, and D.J. Chitwood. 2007. Morphological and molecular identification of Globodera pallida associated with potato in Idaho. Journal of Nematology 39: 133–144.PubMedPubMedCentralGoogle Scholar
  63. Sobczak, M., A. Avrova, J. Jupowicz, M.S. Phillips, K. Ernst, and A. Kumar. 2005. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Molecular Plant-Microbe Interactions 18: 158–168.PubMedGoogle Scholar
  64. Staaf, J., J. Vallon-Christersson, D. Lindgren, G. Juliusson, R. Rosenquist, M. Höglund, Å. Borg, and M. Ringnér. 2008. Normalization of Illumina Infinium whole-genome SNP data improves copy number estimates and allelic intensity ratios. BMC Bioinformatics 9: 409.  https://doi.org/10.1186/1471-2105-9-409.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sun, F., S. Miller, S. Wood, and M.J. Côté. 2007. Occurrence of potato cyst nematode, Globodera rostochiensis, on potato in the saint-Amable region, Quebec, Canada. Plant disease 91: 908.  https://doi.org/10.1094/PDIS-91-7-0908A.CrossRefPubMedGoogle Scholar
  66. Tan, A.M.Y. 2008. Genetic mapping and pyramiding of resistance genes in potato. PhD Thesis, Wageningen University, The Netherlands, ISBN 978–90–8504-977-7.Google Scholar
  67. Toxopeus, H.J., and C.A. Huijsman. 1953. Breeding for resistance to potato root eelworm. Euphytica 2: 180–186.Google Scholar
  68. Trudgill, D.L. 1986. Yield losses caused by potato cyst nematodes: A review of the current position in Britain and prospects for improvements. Annals of Applied Biology 108: 181–198.Google Scholar
  69. Turner, S.J. 1989. New sources of resistance to potato cyst-nematodes in the commonwealth potato collection. Euphytica 42: 145–153.Google Scholar
  70. Turner, S.J., and K. Evans. 1998. The origins, global distribution and biology of potato cyst nematodes (Globodera rostochiensis (Woll.) and Globodera pallida stone). In Potato cyst nematodes; biology, distribution and control, ed. R.J. Marks and B.B. Brodie, 7–26. Wallingford: CAB International.Google Scholar
  71. Urwin, P.E., J. Green, and H.J. Atkinson. 2000. Resistance to Globodera spp. in transgenic Solanum tuberosum cv. Desiree that express proteinase inhibitors. Aspects of Applied Biology 59: 27–32.Google Scholar
  72. Urwin, P.E., K.M. Troth, E.I. Zubko, and H.J. Atkinson. 2001. Effective transgenic resistance to Globodera pallida in potato field trials. Molecular Breeding 8: 95–101.Google Scholar
  73. Vansoest, L.J.M., H.J. Rumpenhorst, and C.A. Huijsman. 1983. Resistance to potato cyst-nematodes in tuber-bearing Solanum species and its geographical distribution. Euphytica 32: 65–74.Google Scholar
  74. Voorrips, R.E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93: 77–78.PubMedGoogle Scholar
  75. Yu, Q., W. Ye, F. Sun, and S. Miller. 2010. Characterization of Globodera rostochiensis (Tylenchida: Heteroderidae) associated with potato in Quebec, Canada. Canadian Journal of Plant Pathology 32: 264–271.Google Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.School of Integrative Plant ScienceCornell UniversityIthacaUSA
  2. 2.Biomathematics and Statistics ScotlandDundeeUK
  3. 3.Department of Entomology, Plant Pathology and NematologyUniversity of IdahoMoscowUSA
  4. 4.Robert W. Holley Center for Agriculture and Health, US Department of AgricultureAgricultural Research ServiceIthacaUSA

Personalised recommendations