Advertisement

In-Season Calcium Fertilizer Application Increases Potato Cell Wall Calcium and Firmness of French Fries

  • Daiki Murayama
  • Hiroshi Koaze
  • Shinya Ikeda
  • Jiwan P. Palta
  • Jun Kasuga
  • Samanthi W. Pelpolage
  • Hiroaki Yamauchi
  • Masayuki TaniEmail author
Article

Abstract

In-season calcium fertilizer application was tested for its effects on the texture of french fries in combination with different blanching conditions during processing. Potato tubers were raised using standard practices with and without calcium fertilization during tuber bulking period. During french fry production, potato strips were treated with either control (without blanching), low-temperature blanching or high-temperature blanching treatments prior to frying process. Our results showed that the in-season application of calcium fertilizer significantly increased the firmness of french fries over the three blanching conditions. Moreover, a combination of calcium fertilization and low-temperature blanching showed the highest firmness of french fries among all the combinations. It was confirmed that calcium fertilization increased calcium concentrations in raw tubers, blanched strips, and its cell walls. Residual activities of pectin methylesterases extracted from potato strips treated by low-temperature blanching were slightly lower than control, but high-temperature blanching inactivated the enzymes as determined by an in vitro assay. Calcium fertilization and low-temperature blanching independently increased content of chelator-soluble pectin extracted from the cell wall. Atomic force microscopy observations suggested that calcium fertilizer application increased the amount of pectins remaining on the primary cell wall even after blanching processes. These results support that the observed increase in firmness of french fries may result from the enhanced formation of Ca2+-induced cross-links between pectin chains in the cell wall based on different mechanisms, i.e., an increase in endogenous Ca2+ available for crosslinking of pectin molecules by calcium fertilizer application and an increase in affinity of pectins to bind Ca2+ through activated pectin methylesterases during low-temperature blanching. Our findings provide potential opportunities to control the firmness of french fries by using different combinations of calcium fertilization and blanching conditions.

Keywords

Solanum tuberosum Pectic polysaccharides Low-temperature blanching Texture Calcium fertilizer 

Resumen

Durante el ciclo de cultivo se probó la aplicación de fertilizante de calcio y sus efectos en la textura de papas a la francesa, en combinación con diferentes condiciones de blanqueo durante el procesamiento. Los tubérculos de las papas fueron obtenidos usando las prácticas estándar con y sin fertilización de calcio durante el período de tuberización. Durante la producción de las papas a la francesa, se trató a las tiras de papa ya fuera como testigo (sin blanqueador), blanqueador a baja temperatura, o a alta, antes del proceso del freído. Nuestros resultados mostraron que la aplicación durante el ciclo de cultivo de fertilizante de calcio aumentó significativamente la firmeza de las papas a la francesa sobre las tres condiciones de blanqueo. Más aun, una combinación de fertilización con calcio y el blanqueo a baja temperatura mostró la firmeza más alta de las papas entre todas las combinaciones. Se confirmó que la fertilización con calcio aumentó sus concentraciones en tubérculos crudos, en tiras blanqueadas, y en las paredes celulares. Las actividades residuales de pectin-metilesterasas extraídas de las tiras de papa tratadas con blanqueador a baja temperatura fueron ligeramente más bajas que el testigo, pero el blanqueo a alta temperatura inactivó a las enzimas, como se determinó en un ensayo in vitro. La fertilización con calcio y el blanqueo a baja temperatura aumentaron, de manera independiente, el contenido de pectina soluble en un quelante extraída de la pared celular. Las observaciones al microscopio de fuerza atómica sugirieron que la aplicación de fertilizante de calcio aumentó la cantidad de una parte de las pectinas que permanecieron en la pared celular primaria aún después del proceso de blanqueo. Estos resultados respaldan que el aumento observado en la firmeza de las papas a la francesa pudiera resultar de la formación aumentada de la inducción de enlaces cruzados de Ca2+ entre cadenas de pectina en la pared celular con base a diferentes mecanismos, x. e., un aumento en el Ca2+ endógeno disponible para el cruzamiento de moléculas de pectina por la aplicación de fertilizante de calcio y un aumento en la afinidad de las pectinas para enlazar Ca2+ mediante la activación de pectin-metilesterasas durante el blanqueo a baja temperatura. Nuestros hallazgos proveen de oportunidades potenciales para el control de la firmeza de papas a la francesa mediante el uso de diferentes combinaciones de fertilización de calcio y condiciones de blanqueo.

Notes

Acknowledgments

The authors gratefully acknowledge Mr. Nagahara and his family who provided the potato samples for this research. We also gratefully thank Dr. Naomichi Baba, Dr. Hiroko Tada, Dr. Tetsuya Uchida and Division of Instrumental Analysis in Okayama University for allowing us to use the atomic force microscope.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abu-Ghannam, N., and H. Crowley. 2006. The effect of low temperature blanching on the texture of whole processed new potatoes. Journal of Food Engineering 74: 335–344.CrossRefGoogle Scholar
  2. Agblor, A., and M.G. Scanlon. 2000. Processing conditions influencing the physical properties of French fried potatoes. Potato Research 43: 163–177.CrossRefGoogle Scholar
  3. Aguilar, C.N., A. Anzaldua-Morales, R. Talamas, and G. Gastelum. 1997. Low-temperature blanch improves textural quality of French-fries. Journal of Food Science 62: 568–571.CrossRefGoogle Scholar
  4. Alvarez, M.D., M.J. Morillo, and W. Canet. 2000. Characterization of the frying process of fresh and blanched potato strips using response surface methodology. European Food Research and Technology 211: 326–335.CrossRefGoogle Scholar
  5. Anderson, C.T. 2016. We be jammin’: An update on pectin biosynthesis, trafficking and dynamics. Journal of Experimental Botany 67: 495–502.CrossRefGoogle Scholar
  6. Andersson, A., V. Gekas, I. Lind, F. Oliveira, R. Öste, and J.M. Aguilfra. 1994. Effect of preheating on potato texture. Critical Reviews in Food Science and Nutrition 34: 229–251.CrossRefGoogle Scholar
  7. Anthon, G.E., and D.M. Barrett. 2002. Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. Journal of Agricultural and Food Chemistry 50: 4119–4125.CrossRefGoogle Scholar
  8. Anthon, G.E., and D.M. Barrett. 2006. Characterization of the temperature activation of pectin methylesterase in green beans and tomatoes. Journal of Agricultural and Food Chemistry 54: 204–211.CrossRefGoogle Scholar
  9. Barrios, E.P., D.W. Newsom, and J.C. Miller. 1963. Some factors influencing the culinary quality of Irish potatoes II. Physical characters. America Journal of Potato Research 40: 200–208.CrossRefGoogle Scholar
  10. Bartolome, L.G., and J.E. Hoff. 1972. Firming of potatoes: Biochemical effects of preheating. Journal of Agricultural and Food Chemistry 20: 266–270.CrossRefGoogle Scholar
  11. Bidhendi, A.J., and A. Geitmann. 2016. Relating the mechanics of the primary plant cell wall to morphogenesis. Journal of Experimental Botany 67: 449–461.CrossRefGoogle Scholar
  12. Christiaens, S., S. Van Buggenhout, K. Houben, I. Fraeye, A.M. Van Loey, and M.E. Hendrickx. 2011. Towards a better understanding of the pectin structure–function relationship in broccoli during processing: Part I—Macroscopic and molecular analyses. Food Research International 44: 1604–1612.CrossRefGoogle Scholar
  13. Davies, L.M., and P.J. Harris. 2003. Atomic force microscopy of microfibrils in primary cell walls. Planta 217: 283–289.Google Scholar
  14. De Roeck, A., D.N. Sila, T. Duvetter, A. Van Loey, and M. Hendrickx. 2008. Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chemistry 107: 1225–1235.CrossRefGoogle Scholar
  15. Demarty, M., C. Morvan, and M. Thellier. 1984. Calcium and the cell wall. Plant, Cell & Environment 7: 441–448.CrossRefGoogle Scholar
  16. Filisetti-Cozzi, T.M.C.C., and N.C. Carpita. 1991. Measurement of uronic-acids without interference from neutral sugars. Analytical Biochemistry 197: 157–162.CrossRefGoogle Scholar
  17. Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology 37: 165–186.CrossRefGoogle Scholar
  18. Fueki, N., K. Sato, H. Takeuchi, H. Sato, S. Nakatsu, and J. Kato. 2011. Prediction of nitrogen uptake by sugar beet (Beta vulgaris L.) by scoring organic matter and nitrogen management (N-score), in Hokkaido, Japan. Soil Science and Plant Nutrition 57: 411–420.CrossRefGoogle Scholar
  19. Glick, D. 1987. Isolation and analysis of cell walls from plant material. In Methods of biochemical analysis, ed. Robert R. Selvendran and Malcolm A. O’Neill, 25–153. New York: Wiley.CrossRefGoogle Scholar
  20. Gupta, P., U. Shivhare, and A. Bawa. 2000. Studies on frying kinetics and quality of French fries. Drying Technology 18: 311–321.CrossRefGoogle Scholar
  21. Hokkaido Department for Agropolicy. 2010. Hokkaido fertilizer application guide. Sapporo: Hokkaido Prefecture Press.Google Scholar
  22. Huang, J.H., A. Kortstee, D.C.T. Dees, L.M. Trindade, R.G.F. Visser, H. Gruppen, and H.A. Schols. 2017. Evaluation of both targeted and non-targeted cell wall polysaccharides in transgenic potatoes. Carbohydrate Polymers 156: 312–321.CrossRefGoogle Scholar
  23. Jarvis, M.C. 1982. The proportion of calcium-bound pectin in plant cell walls. Planta 154: 344–346.CrossRefGoogle Scholar
  24. Jarvis, M.C., M.A. Hall, D.R. Threlfall, and J. Friend. 1981. The polysaccharide structure of potato cell walls: Chemical fractionation. Planta 152: 93–100.CrossRefGoogle Scholar
  25. Jaswal, A.S. 1970. Non-starch polysaccharides and the texture of French fried potato. America Potato Journal 47: 311–316.CrossRefGoogle Scholar
  26. Johnston, F.B., E. Kenkars, and A.C. Nunes. 1970. Starch and dry matter content of netted gem in relation to French fry texture. American Journal of Potato Research 47: 87–93.CrossRefGoogle Scholar
  27. Khalil, A. 1999. Quality of french fried potatoes as influenced by coating with hydrocolloids. Food Chememistry 66: 201–208.CrossRefGoogle Scholar
  28. Kirby, A.R., A. Ng, K.W. Waldron, and V.J. Morris. 2006. AFM investigations of cellulose fibers in Bintje potato (Solanum tuberosum L.) cell wall fragments. Food Biophysics 1: 163–167.CrossRefGoogle Scholar
  29. Kleinhenz, M.D., J.P. Palta, C.C. Gunter, and K.A. Kelling. 1999. Impact of source and timing of calcium and nitrogen applications on ‘Atlantic’ potato tuber calcium concentrations and internal quality. Journal of the American Society for Horticultural Science 124: 498–506.CrossRefGoogle Scholar
  30. Kunzek, H., S. Müller, S. Vetter, and R. Godeck. 2002. The significance of physico chemical properties of plant cell wall materials for the development of innovative food products. European Food Research and Technology 214: 361–376.CrossRefGoogle Scholar
  31. Manganaris, G.A., M. Vasilakakis, G. Diamantidis, and I. Mignani. 2005. Effect of calcium additives on physicochemical aspects of cell wall pectin and sensory attributes of canned peach (Prunus persica (L) Batsch cv Andross). Journal of the Science of Food and Agriculture 85: 1773–1778.CrossRefGoogle Scholar
  32. Micheli, F. 2001. Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends in Plant Science 6: 414–419.CrossRefGoogle Scholar
  33. Murayama, D., Y. Sakashita, T. Yamazawa, K. Nakata, Y. Shinbayashi, J. Palta, M. Tani, H. Yamauchi, and H. Koaze. 2016. Effect of calcium fertilization on processing properties and storability of frozen French fries. Food Science and Technology Research 22: 451–459.CrossRefGoogle Scholar
  34. Murayama, D., M. Tani, S. Ikeda, J.P. Palta, S.W. Pelpolage, H. Yamauchi, and H. Koaze. 2017. Effects of calcium concentration in potato tuber cells on the formation of cross-links between pectin molecules by Ca2+. American Journal of Potato Research 94: 524–533.CrossRefGoogle Scholar
  35. Ozgen, S., B.H. Karlsson, and J.P. Palta. 2006. Response of potatoes (cv russet Burbank) to supplemental calcium applications under field conditions: Tuber calcium, yield, and incidence of internal brown spot. American Journal of Potato Research 83: 195–204.CrossRefGoogle Scholar
  36. Palta, J.P. 2010. Improving potato tuber quality and production by targeted calcium nutrition: The discovery of tuber roots leading to a new concept in potato nutrition. Potato Research 53: 267–275.CrossRefGoogle Scholar
  37. Ptashnyk, M., and H.R. Allen. 2018. Calcium–pectin chemistry and biomechanics: Biological background and mathematical modelling. In Plant biomechanics: From structure to function at multiple scales, ed. Anja Geitmann and Joseph Gril, 273–303. New York: Springer.CrossRefGoogle Scholar
  38. Puri, A., T. Solomos, and A. Kramer. 1982. Partial purification and characterisation of potato pectinesterase. Food Chemistry 8: 203–213.CrossRefGoogle Scholar
  39. Sandhu, J.S., and P.S. Takhar. 2015. Effect of frying parameters on mechanical properties and microstructure of potato disks. Journal of Texture Studies 46: 385–397.CrossRefGoogle Scholar
  40. Sattelmacher, B. 2001. The apoplast and its significance for plant mineral nutrition. New Phytologist 149: 167–192.CrossRefGoogle Scholar
  41. Sila, D.N., S. Van Buggenhout, T. Duvetter, I. Fraeye, A. De Roeck, A. Van Loey, and M. Hendrickx. 2009. Pectins in processed fruits and vegetables : Part II—Structure–function relationships. Comprehensive Reviews in Food Science and Food Safety 8: 86–104.CrossRefGoogle Scholar
  42. Stanley, D.W., M.C. Bourne, A.P. Stone, and W.V. Wismer. 1995. Low temperature blanching effects on chemistry, firmness and structure of canned green beans and carrots. Journal of Food Science 60: 327–333.CrossRefGoogle Scholar
  43. Subramanian, N.K., P.J. White, M.R. Broadley, and G. Ramsay. 2011. The three-dimensional distribution of minerals in potato tubers. Annals of Botany 107: 681–691.CrossRefGoogle Scholar
  44. Tajner-Czopek, A. 2003. Changes of pectic substances concentration in potatoes and French fries and the effect of these substances on the texture of the final product. Food/Nahrung 47: 228–231.CrossRefGoogle Scholar
  45. Tan, M.S., S.C. Moore, R.F. Tabor, N. Fegan, S. Rahman, and G.A. Dykes. 2016. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. BMC Microbiology 16: 1–12.CrossRefGoogle Scholar
  46. Van Loon, W.A., J.E. Visser, J.P. Linssen, D.J. Somsen, H.J. Klok, and A.G. Voragen. 2007. Effect of pre-drying and par-frying conditions on the crispness of French fries. European Food Research and Technology 225: 929–935.CrossRefGoogle Scholar
  47. Voxeur, A., and H. Höfte. 2016. Cell wall integrity signaling in plants: “To grow or not to grow that's the question”. Glycobiology 26: 950–960.CrossRefGoogle Scholar
  48. Waldron, K.W., M.L. Parker, and A.C. Smith. 2003. Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety 2: 128–146.CrossRefGoogle Scholar
  49. Whittenberger, R.T. 1951. Changes in specific gravity, starch content, and sloughing of potatoes during storage. American Journal of Potato Research 28: 738–747.CrossRefGoogle Scholar
  50. Zdunek, A., A. Kozioł, J. Cybulska, M. Lekka, and P.M. Pieczywek. 2016. The stiffening of the cell walls observed during physiological softening of pears. Planta 243: 519–529.CrossRefGoogle Scholar
  51. Zhao, W., W. Xie, S. Du, S. Yan, J. Li, and Q. Wang. 2016. Changes in physicochemical properties related to the texture of lotus rhizomes subjected to heat blanching and calcium immersion. Food Chemistry 211: 409–414.CrossRefGoogle Scholar
  52. Zykwinska, A.W., M.C.J. Ralet, C.D. Garnier, and J.F.J. Thibault. 2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology 139: 397–407.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.The United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
  2. 2.Department of Food ScienceObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  3. 3.Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  4. 4.Department of Food ScienceUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations