Advertisement

Captures of Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) Adults Affected by the Presence of Volunteer Potatoes (Solanum tuberosum L.)

  • Matthew L. Klein
  • Silvia I. RondonEmail author
Article

Abstract

The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a key potato (Solanum tuberosum L.) pest that has the ability to vector the plant pathogenic bacterium Candidatus Liberibacter solanacearum (Lso), the putative causal agent of zebra chip disease of potato. The insect primarily feeds and completes its life cycle on Solanaceous crops and weeds; however, in the Columbia Basin of Oregon and Washington, B. cockerelli has been found in association with crops such as maize (Zea mays L.) and wheat (Triticum spp), both belonging to the Poaceae family. We hypothesize that this is due to the presence of volunteer potato; in this region, the potato crop is in a 3-yr rotation with either maize or wheat. Consequently, we evaluated potato, maize, wheat, maize + volunteer potato, wheat + volunteer potato on captures of B. cockerelli adults in a 2-year field experiment using an inverted leaf blower and yellow sticky cards. Data collected in this study confirms that B. cockerelli has an affinity for potato, although, B. cockerelli could be found in maize and wheat mainly when volunteer potatoes were present. In addition, B. cockerelli counts varied depending if using inverted leaf blower or yellow sticky cards. Knowing that B. cockerelli is found in fields where volunteer potatoes are present, it should be taken into consideration for large-scale potato psyllid management.

Keywords

Bacteria Distribution Insect Management Psyllids Zebra chip 

Resumen

El psílido de la papa, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), es una plaga clave de la papa (Solanum tuberosum L.), que tiene la habilidad de ser vector de la bacteria fitopatógena Candidatus Liberibacter solanacearum (Lso), el propuesto agente causal de la enfermedad de la papa rayada de la papa. El insecto se alimenta primeramente, y completa su ciclo de vida, en cultivos y malezas de Solanáceas; no obstante, en la rivera del Columbia en Oregon y Washington, a B. cockerelli se le ha encontrado en asociación con cultivos tales como el maíz (Zea mays L.) y trigo (Triticum spp), ambos pertenecientes a la familia Poaceae. Tenemos la hipótesis de que esto se debe a la presencia de papa residual; en esta región, el cultivo de la papa está en rotación de tres años, ya sea con maíz o trigo. En consecuencia, evaluamos papa, maíz, trigo, maíz + papa residual, trigo + papa residual, en la captura de adultos de B. cockerelli en un experimento de campo de dos años, usando una sopladora de hojas invertida y tarjetas amarillas con pegamento. Los datos colectados en este estudio confirman que B. cockerelli tiene una afinidad por la papa, aunque B. cockerelli pudo encontrarse en maíz y trigo, principalmente cuando las papas residuales estaban presentes. Además, las cantidades de B. cockerelli variaron dependiendo si se usaba la sopladora de hojas invertida o las tarjetas amarillas con pegamento. Sabiendo que B. cockerelli se encuentra en campos donde las papas residuales están presentes, se debería tomar en consideración para el manejo del psílido de la papa a gran escala.

Notes

Acknowledgements

The authors are grateful to Mr. Ira Thompson and his 2014 and 2015 field crew for helping with the fieldwork. This work was partially supported by the Oregon State University Irrigated Agricultural Research Rondon Program, and the Oregon Potato Commission. M.L. Klein was supported by the NIFA Grant 2012-04150. Thanks to Dr. J. Atkins (Syngenta) and G. Harris and A. Haguewood (RDO) for providing pesticides and seeds for our experiments.

References

  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Liefting, and G.R.G. Clover. 2008. First report of the detection of “Candidatus Liberibacter” species in Zebra chip disease-infected potato plants in the United States. Plant Disease 93: 108–108.CrossRefGoogle Scholar
  2. Cameron, P.J., M.R. Surrey, P.J. Wigley, J.A.D. Anderson, D.E. Hartnett, and A.R. Wallace. 2009. Seasonality of Bactericera cockerelli in potatoes (Solanum tuberosum) in South Auckland, New Zealand. New Zealand Journal of Crop and Horticultural Science 37: 295–301.CrossRefGoogle Scholar
  3. Cranshaw, W.S. 2001. Diseases caused by insect toxin: psyllid yellows. In Compendium of potato diseases, 2nd ed. W.R. Stevenson, R. Loria, G.D. Franc, and D.P. Weingartner. St. Paul MN, 73–74.Google Scholar
  4. Crosslin, J.M., N. Olsen, and P. Nolte. 2012. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Idaho. Plant Disease 96: 453–453.CrossRefGoogle Scholar
  5. Eyer, J.R., and R.F. Crawford. 1933. Observations on the feeding habits of the potato psyllid (Paratrioza cockerelli Sulc.) and the pathological history of the “psyllid yellows” which it produces. Journal of Economic Entomology 26: 846–850.CrossRefGoogle Scholar
  6. Hamm, P.B., S.I. Rondon, J.M. Crosslin, and J.E. Munyaneza. 2011. A new threat in the Columbia Basin of Oregon and Washington: Zebra chip. In Proc. 11th Annu. Zebra chip report. Sess, 6–9.Google Scholar
  7. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, ss vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.CrossRefGoogle Scholar
  8. Henne, D., J. A. Goolsby, T. R. Mirkov, and J. E. Munyaneza. 2011. Potato psyllid and zebra chip management in South Texas. 11th annual Zebra Chip Conference. San Antonio, Texas, 186.Google Scholar
  9. Hope, R. M. 2013. Rmisc: Rmisc: Ryan miscellaneous. R package version 1.5. https://cran.r-project.org/web/packages/Rmisc/Rmisc.pdf.
  10. Horton, D.R., W.R. Cooper, J.E. Munyaneza, K.D. Swisher, E.R. Echegaray, A.F. Murphy, S.I. Rondon, C.H. Wohleb, T.D. Water, and A.S. Jensen. 2015. A new problem and old questions: Potato psyllid in the Pacific northwest. American Entomologist 61 (4): 234–244.CrossRefGoogle Scholar
  11. Horton, D.R., E. Miliczky, J. Thinakaran, W.R. Cooper, J.E. Munyaneza, C.H. Wohleb, T.D. Water, and A. Karasev. 2017. Potato psyllid and the South American desert plant Nolana: an unlikely psyllid host? Potato progress. Nov. Vol 17, No16.Google Scholar
  12. Jensen, J.H. 1939. Psyllid yellows in Nebraska-1938. Plant Disease Report 23: 35–36.Google Scholar
  13. Kaur, N., W.R. Cooper, J.M. Duringer, I.E. Badillo-Vargas, G. Esparza-Dias, A. Rashed, and D.R. Horton. 2018. Survival and development of potato psyllid (Hemiptera: Triozidae) on Convolvulaceae: Effects of a plant-fungus symbiosis (periglandula). PlosOne.  https://doi.org/10.1371/journal.pone.0201506.
  14. Knowlton, G.F., and W.L. Thomas. 1934. Host plants of the potato psyllids. Journal of Economic Entomology 27: 547.CrossRefGoogle Scholar
  15. Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new “Candidatus Liberibacter” species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474–1474.CrossRefGoogle Scholar
  16. Liefting, L.W., P.W. Sutherland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Disease 93: 208–214.CrossRefGoogle Scholar
  17. Martin, N.A. 2008. Host plants of the potato/tomato psyllid: A cautionary tale. The Weta 35: 12–16.Google Scholar
  18. Munyaneza, J.E. 2012. Zebra Chip disease of potato: Biology, epidemiology and management. American Journal of Potato Research 89: 329–350.CrossRefGoogle Scholar
  19. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007a. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  20. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007b. Association of Bactericera cockerelli (Homoptera: Triozidae) with “zebra chip,” a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefGoogle Scholar
  21. Munyaneza, J.E., J.M. Crosslin, and J.L. Buchman. 2009. Seasonal occurrence and abundance of the potato psyllid, Bactericera cockerelli, in south Central Washington. American Journal of Potato Research 86: 513–518.CrossRefGoogle Scholar
  22. Munyaneza, J.E., V.G. Sengoda, E. Aguilar, B. Bextine, and K.F. McCue. 2013. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-infested tobacco in Nicaragua. Plant Disease 97: 1244–1244.CrossRefGoogle Scholar
  23. Murphy, A.F., S.I. Rondon, and A.S. Jensen. 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific northwest. American Journal of Potato Research 90: 294–296.CrossRefGoogle Scholar
  24. Murphy, A.F., R. Cating, A. Goyer, P.B. Hamm, and S.I. Rondon. 2014. First report of natural infection by “Candidatus Liberibacter solanacearum’” in bittersweet nightshade (Solanum dulcamara L.) in the Columbia Basin of eastern Oregon. Plant disease note 05-14-0497PDNRI. Plant Disease Journal 98 (10): 1425.CrossRefGoogle Scholar
  25. NASS. 2016. QuickStats. National Agricultural Statistics Service, United States Department of Agriculture. https://www.nass.usda.gov/Statistics_by_State/Oregon /Publications /facts_and_figures/facts_and_figures.pdf.
  26. Ott, R.L. 1993. An introduction to statistical methods and data analysis, 937–941. Blemont: Duxbury Press.Google Scholar
  27. Prager, S.M., B. Vindiola, G.S. Kund, F.J. Byrtne, and J.T. Trumble. 2013. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Šulk) (Hemiptera: Triozidae). Crop Protection 54: 84–91.CrossRefGoogle Scholar
  28. Rondon, S.I. 2016. Potato Update. OR. State Univ. Ext. Serv. X: 1–3.Google Scholar
  29. Rondon, S.I., and M.E. Gray. 2003. Captures of western corn rootworm (Coleoptera: Chrysomelidae) adults with Pherocon AM and vial traps in four crops in east Central Illinois. Journal of Economic Entomology 96 (3): 737–747.CrossRefGoogle Scholar
  30. Rondon, S.I., A. Schreiber, P.B. Hamm, C. Wohleb, T. Waters, R. Cooper, D. Walenta, and S. Reitz. 2017. Potato psyllid vector of zebra chip disease in the PNW. 633. PNW Extension Publication. https://catalog.extension.oregonstate.edu/pnw633.
  31. RStudio.2016. RStudio: Integrated development for R. Boston, MA: RStudio, Inc. http://www.rstudio.com/.
  32. SAS Institute Inc. 2016. SAS 9.1.3. Software. Cary, NC.: SAS institute Inc.Google Scholar
  33. Secor, G.A., and V.V. Rivera-Varas. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Rev. Latinoam. Papa. 1 (Supl): 1–8.Google Scholar
  34. Steiner, C.M., G. Newberry, R. Boydston, J. Yenish, and R. Thornton. 2005. Volunteer potato management in Pacific northwest rotational crops. Wash. State Univ. Ext. Bull. 1–12.Google Scholar
  35. Teulon, D.A.J., P.J. Workman, K.L. Thomas, and M.C. Nielsen. 2009. Bactericera cockerelli: Incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection 62: 136–144.Google Scholar
  36. Thinakaran, J., D. Horthon, R. Cooper, A. Jensen, C. Wohleb, J. Dahan, T. Mustafa, A. Karasev, and J. Munyaneza. 2017. Association of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in potato growing regions of Washington, Idaho, and Oregon. American Journal of Potato Research 94: 490–499.  https://doi.org/10.1007/s12230-017-9586-0.CrossRefGoogle Scholar
  37. Thomas, K.L., D.C. Jones, L.B. Kumarasinghe, J.E. Richmond, G.S.C. Gill, M.S. Bullians, and others. 2011. Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. New Zealand Plant Protection 64: 259–268.Google Scholar
  38. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. U.S. Department of Agriculture. https://catalog.hathitrust.org/Record/009790750.
  39. Wickham, H., 2013. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, New York, 2009.Google Scholar
  40. Yen, A.L., D.G. Madge, N.A. Berry, and J.D.L. Yen. 2013. Evaluating the effectiveness of five sampling methods for detection of the tomato potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Psylloidea: Triozidae): Sampling methods to detect tomato potato psyllids. Australian Journal of Entomology 52: 168–174.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Hermiston Agricultural Research CenterOregon State UniversityHermistonUSA
  2. 2.CorvallisUSA

Personalised recommendations