Advertisement

Antifungal Activity of a Fatty Ammonium Chloride Amylose Inclusion Complex against Fusarium sambucinum; Control of Dry Rot on Multiple Potato Varieties.

  • William T. Hay
  • George F. Fanta
  • Joseph O. Rich
  • David A. Schisler
  • Gordon W. Selling
Short Communication

Abstract

The cationic amylose-hexadecylammonium chloride inclusion complex (Hex-Am) was found to be an effective antifungal treatment for Fusarium sambucinum (Fückel), a causal agent of potato dry rot. The Hex-Am treatment was effective against F. sambucinum in vitro and in situ, with an effective 50% inhibitory concentration of 400 μg/ml; active component concentration of 20 μg/ml. The amylose complex alone, and blended with polyvinyl alcohol (PVOH), was effective in controlling dry rot in five varieties of potatoes with up to a 99% reduction in damage to the potato tubers. The amylose complex showed no apparent signs of phytotoxicity, with wound periderm reforming within one week of storage at 15 °C and 90% RH. The Hex-Am treatments form an effective antimicrobial film at the wound site, significantly inhibiting fungal damage to the wounded tubers.

Keywords

Amylose complex Fusarium sambucinum Antifungal Potato dry rot 

Resumen

Se encontró que el complejo de inclusión catiónico amylosa-hexadecilamonio clorado (Hex-Am) era un tratamiento antifúngico efectivo para Fusarium sambucinum (Fückel), un agente causal de la pudrición seca de la papa. El tratamiento con Hex-Am fue efectivo contra F. sambucinum in vitro e in situ, con una concentración inhibitoria del 50% de 400 μg/ml; con un componente de concentración activa de 20 μg/ml. El complejo de amilosa solo y mezclado con polivinil-alcohol (PVOH) fue efectivo en el control de la pudrición seca en cinco variedades de papa con hasta un 99% de reducción del daño a los tubérculos de papa. El complejo de amilosa no mostró signos de toxicidad aparente, con la reformación de herida del peridermo dentro de una semana de almacenamiento a 15 °C y 90% de HR. Los tratamientos con Hex-Am forman una película antimicrobial efectiva en el sitio de la herida, inhibiendo significativamente el daño por el hongo en los tubérculos heridos.

References

  1. Al-Hetar, M., Z. Abidin, M. Sariah, and M. Wong. 2011. Antifungal activity of chitosan against fusarium oxysporum f. sp. cubense. Journal of Applied Polymer Science 120 (4): 2434–2439.CrossRefGoogle Scholar
  2. Baturo-Ciesniewska, A., L. Lenc, A. Grabowski, and A. Lukanowski. 2015. Characteristics of polish isolates of fusarium sambucinum: Molecular identification, pathogenicity, diversity and reaction to control agents. American Journal of Potato Research 92 (1): 49–61.CrossRefGoogle Scholar
  3. Bojanowski, A., T.J. Avis, S. Pelletier, and R.J. Tweddell. 2013. Management of potato dry rot. Postharvest Biology and Technology 84: 99–109.CrossRefGoogle Scholar
  4. Chełkowski, J. 1989. Toxinogenicity of Fusarium species causing dry rot of potato tubers. In Fusarium (pp. 435–440): Elsevier.Google Scholar
  5. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics, and biology: American Phytopathological Society (APS Press).Google Scholar
  6. El-Hassan, K., M. El-Saman, A. Mosa, and M. Mostafa. 2007. Variation among fusarium spp. the causal of potato tuber dry rot in their pathogenicity and mycotoxins production. Egyptian Journal of Phytopathology 35 (2): 53–68.Google Scholar
  7. Eller, F., Hay, W., Kirker, G., Mankowski, M., Sellling, G. 2018. Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi. International Biodeterioration & Biodegradation.Google Scholar
  8. Fanta, G.F., F.C. Felker, W.T. Hay, and G.W. Selling. 2017. Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes. Industrial Crops and Products 105: 231–237.CrossRefGoogle Scholar
  9. Fanta, G.F., F.C. Felker, and G.W. Selling. 2016a. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation. Starch - Stärke 68 (9–10): 874–884.  https://doi.org/10.1002/star.201500242.CrossRefGoogle Scholar
  10. Fanta, G.F., F.C. Felker, G.W. Selling, W.T. Hay, and A. Biswas. 2016b. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes. Journal of Applied Polymer Science 133 (42).  https://doi.org/10.1002/app.44110.
  11. Fanta, G.F., J.A. Kenar, J.A. Byars, F.C. Felker, and R.L. Shogren. 2010. Properties of aqueous dispersions of amylose–sodium palmitate complexes prepared by steam jet cooking. Carbohydrate Polymers 81 (3): 645–651.CrossRefGoogle Scholar
  12. Fanta, G.F., J.A. Kenar, and F.C. Felker. 2013. Preparation and properties of amylose complexes prepared from hexadecylamine and its hydrochloride salt. Carbohydrate Polymers 98 (1): 555–561.CrossRefPubMedCentralGoogle Scholar
  13. Fanta, G.F., R.L. Shogren, and J.H. Salch. 1999. Steam jet cooking of high-amylose starch–fatty acid mixtures. An investigation of complex formation. Carbohydrate Polymers 38 (1): 1–6.CrossRefGoogle Scholar
  14. Gachango, E., L. Hanson, A. Rojas, J. Hao, and W. Kirk. 2012. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Disease 96 (12): 1767–1774.CrossRefGoogle Scholar
  15. Godet, M.C., B. Bouchet, P. Colonna, D.J. Gallant, and A. Buleon. 1996. Crystalline amylose-fatty acid complexes: Morphology and crystal thickness. Journal of Food Science 61 (6): 1196–1201.CrossRefGoogle Scholar
  16. Hay, W.T., R.W. Behle, G.F. Fanta, F.C. Felker, S.C. Peterson, and G.W. Selling. 2017a. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes. Carbohydrate Polymers 157: 1050–1056.CrossRefPubMedCentralGoogle Scholar
  17. Hay, W.T., J.A. Byars, G.F. Fanta, and G.W. Selling. 2017b. Rheological characterization of solutions and thin films made from amylose-hexadecylammonium chloride inclusion complexes and polyvinyl alcohol. Carbohydrate Polymers 161: 140–148.  https://doi.org/10.1016/j.carbpol.2017.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hay, W.T., G.F. Fanta, S.C. Peterson, A.J. Thomas, K.D. Utt, K.A. Walsh, V.M. Boddu, and G.W. Selling. 2018. Improved hydroxypropyl methylcellulose (HPMC) films through incorporation of amylose-sodium palmitate inclusion complexes. Carbohydrate Polymers 188: 76–84.CrossRefPubMedCentralGoogle Scholar
  19. Helbert, W., and H. Chanzy. 1994. Single crystals of V amylose complexed with n-butanol or n-pentanol: Structural features and properties. International Journal of Biological Macromolecules 16 (4): 207–213.CrossRefPubMedCentralGoogle Scholar
  20. Heltoft, P., J.L. Brierley, A.K. Lees, L. Sullivan, J. Lynott, and A. Hermansen. 2016. The relationship between soil inoculum and the development of fusarium dry rot in potato cultivars Asterix and Saturna. European Journal of Plant Pathology 146 (3): 711–714.CrossRefGoogle Scholar
  21. Immel, S., and F.W. Lichtenthaler. 2000. The hydrophobic topographies of amylose and its blue iodine complex. Starch-Stärke 52 (1): 1–8.CrossRefGoogle Scholar
  22. Klem, R. E., and Brogly, D.A. 1981. Method for selecting the optimum starch binder preparation system. Pulp and Paper 55: 98–103.Google Scholar
  23. Kuroda, K., and G.A. Caputo. 2013. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5 (1): 49–66.PubMedPubMedCentralGoogle Scholar
  24. Leach, S. 1985. Contamination of soil and transmission of seedborne potato dry rot fungi (fusarium spp.) to progeny tubers. American potato journal 62 (3): 129–136.CrossRefGoogle Scholar
  25. Leslie, J. F., Summerell, B. A. 2008). The Fusarium laboratory manual: John Wiley & Sons.Google Scholar
  26. Li, Y.-C., X.-J. Sun, B. Yang, Y.-H. Ge, and W. Yi. 2009. Antifungal activity of chitosan on fusarium sulphureum in relation to dry rot of potato tuber. Agricultural Sciences in China 8 (5): 597–604.CrossRefGoogle Scholar
  27. Lui, L., and A. Kushalappa. 2002. Response surface models to predict potato tuber infection by fusarium sambucinum from duration of wetness and temperature, and dry rot lesion expansion from storage time and temperature. International Journal of Food Microbiology 76 (1–2): 19–25.CrossRefPubMedCentralGoogle Scholar
  28. Marasas, W.F.O., P.E. Nelson, and T.A. Toussoun. 1984. Toxigenic Fusarium species. Identity and mycotoxicology: Pennsylvania State University.Google Scholar
  29. Mecteau, M.R., A. Joseph, and R.J. Tweddell. 2002. Effect of organic and inorganic salts on the growth and development of fusarium sambucinum, a causal agent of potato dry rot. Mycological Research 106 (6): 688–696.CrossRefGoogle Scholar
  30. Munkvold, G. P. (2017). Fusarium species and their associated mycotoxins. In Mycotoxigenic Fungi (pp. 51–106): Springer.Google Scholar
  31. Nimz, O., K. Gessler, I. Usón, G.M. Sheldrick, and W. Saenger. 2004. Inclusion complexes of V-amylose with undecanoic acid and dodecanol at atomic resolution: X-ray structures with cycloamylose containing 26 D-glucoses (cyclohexaicosaose) as host. Carbohydrate Research 339 (8): 1427–1437.CrossRefPubMedCentralGoogle Scholar
  32. Obiro, W.C., S. Sinha Ray, and M.N. Emmambux. 2012. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Reviews International 28 (4): 412–438.CrossRefGoogle Scholar
  33. Ocamb, C.M., P.B. Hamm, and D.A. Johnson. 2007. Benzimidazole resistance of fusarium species recovered from potatoes with dry rot from storages located in the Columbia basin of Oregon and Washington. American Journal of Potato Research 84 (2): 169–177.CrossRefGoogle Scholar
  34. Palermo, E.F., and K. Kuroda. 2010. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied Microbiology and Biotechnology 87 (5): 1605–1615.CrossRefPubMedCentralGoogle Scholar
  35. Palermo, E.F., S. Vemparala, and K. Kuroda. 2012. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules 13 (5): 1632–1641.CrossRefPubMedCentralGoogle Scholar
  36. Saenger, W. 1984. The structure of the blue starch-iodine complex. Naturwissenschaften 71 (1): 31–36.CrossRefGoogle Scholar
  37. Schisler, D.A., P.J. Slininger, G. Kleinkopf, R.J. Bothast, and R.C. Ostrowski. 2000. Biological control of fusarium dry rot of potato tubers under commercial storage conditions. American Journal of Potato Research 77 (1): 29–40.CrossRefGoogle Scholar
  38. Secor, G.A., and N.C. Gudmestad. 1999. Managing fungal diseases of potato. Canadian Journal of Plant Pathology 21 (3): 213–221.CrossRefGoogle Scholar
  39. Stevenson, W. R., Loria, R., Franc, G. D., & Weingartner, D. P. 2001. Compendium of Potato Diseases: American Phytopathological Society.Google Scholar
  40. Tester, R.F., J. Karkalas, and X. Qi. 2004. Starch—Composition, fine structure and architecture. Journal of Cereal Science 39 (2): 151–165.CrossRefGoogle Scholar
  41. Vaughn, S.F., and G.F. Spencer. 1994. Antifungal activity of natural compounds against thiabendazole-resistant fusarium sambucinum strains. Journal of Agricultural and Food Chemistry 42 (1): 200–203.CrossRefGoogle Scholar
  42. Wharton, P.S., W.W. Kirk, D. Berry, and P. Tumbalam. 2007. Seed treatment application-timing options for control of fusarium decay and sprout rot of cut seedpieces. American Journal of Potato Research 84 (3): 237–244.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Plant Polymer Research Unit, USDA, Agricultural Research ServiceNational Center for Agricultural Utilization ResearchPeoriaUSA
  2. 2.Renewable Product Technology Research Unit, USDA, Agricultural Research ServiceNational Center for Agricultural Utilization ResearchPeoriaUSA
  3. 3.Crop Bioprotection Research Unit, USDA, Agricultural Research ServiceNational Center for Agricultural Utilization ResearchPeoriaUSA

Personalised recommendations