American Journal of Potato Research

, Volume 95, Issue 6, pp 679–686 | Cite as

Resistance to Meloidogyne chitwoodi Identified in Wild Potato Species

  • Ryan C. Graebner
  • Charles R. Brown
  • Russell E. Ingham
  • Christina H. Hagerty
  • Hassan Mojtahedi
  • Richard A. Quick
  • Launa L. Hamlin
  • Nadine Wade
  • John B. Bamberg
  • Vidyasagar SathuvalliEmail author


Meloidogyne chitwoodi (Columbia root-knot nematode, CRKN) can cause serious damage in potato production systems, decreasing tuber value in the fresh market and processing industries. Genetic resistance to CRKN was first identified from the wild diploid potato species Solanum bulbocastanum accession SB22 and was successfully introgressed into tetraploid potato breeding material. To expand the base of genetic resistance, 40 plant accessions representing nine wild potato species were screened for their resistance to M. chitwoodi. Greenhouse screening identified fifteen clones from S. hougasii, one clone from S. bulbocastanum, and one clone from S. stenophyllidium with moderate to high levels of resistance against three isolates of M. chitwoodi. Geographical mapping showed that the resistance sources identified in this and previous studies primarily originated in the states of Jalisco and Michoacán in west-central Mexico. These new sources of resistance will be introgressed into elite potato populations to facilitate the development of potato cultivars with durable resistance to M. chitwoodi.


Crop wild relatives germplasm screening root-knot nematode Solanum hougasii bulbocastanum stenophyllidium 


Meloidogyne chitwoodi (nematodo agallador de Columbia, CRKN por sus siglas en inglés), puede causar daño serio en los sistemas de producción de papa, disminuyendo el valor del tubérculo en el mercado fresco y en las industrias del procesamiento. La resistencia genética al CRKN se identificó primero en la especie silvestre diploide de papa Solanum bulbocastanum, accesión SB22, y fue introducida con éxito en material tetraploide de mejoramiento de papa. Con el fin de expandir la base de resistencia genética, se probaron 40 plantas de las accesiones, representando nueve especies silvestres de papa, para su resistencia a M. chitwoodi. En las pruebas de invernadero se identificaron 15 clones de S. hougasii, uno de S. bulbocastanum, y uno de S. stenophyllidium, con niveles de moderados a altos de resistencia contra tres aislamientos de M. chitwoodi. El mapa geográfico mostró que las fuentes de resistencia identificadas en este y en estudios previos, se originaron primeramente en los Estados de Jalisco y Michoacán, en el centro-occidente de México. Estas nuevas fuentes serán introducidas a poblaciones élite de papa para permitir el desarrollo de variedades de papa con resistencia durable a M. chitwoodi.

Supplementary material

12230_2018_9674_MOESM1_ESM.xls (75 kb)
Supplementary file 1 (XLS 75 kb)
12230_2018_9674_MOESM2_ESM.xls (39 kb)
Supplementary file 2 (XLS 39 kb)
12230_2018_9674_MOESM3_ESM.xls (31 kb)
Supplementary file 3 (XLS 31 kb)


  1. Austin, S., J.D. Pohlman, C.R. Brown, H. Mojtahedi, G.S. Santo, D.S. Douches, and J.P. Helgeson. 1993. Interspecific somatic hybridization between Solanum tuberosum L. and S. bulbocastanum Dun. As a means of transferring nematode resistance. American Potato Journal 70: 485–495.CrossRefGoogle Scholar
  2. Brown, C.R., and H. Mojtahedi. 2004. Evaluation of Solanum fendleri as a source of resistance to Meloidogyne chitwoodi. American Journal of Potato Research 81: 415–419.CrossRefGoogle Scholar
  3. Brown, C.R., H. Mojtahedi, and G.S. Santo. 1989. Comparison of reproductive efficiency of Meloidogyne chitwoodi on Solanum bulbocastanum in soil and in vitro tests. Plant Disease 73: 957–959.CrossRefGoogle Scholar
  4. Brown, C.R., H. Mojtahedi, and G.S. Santo. 1991. Resistance to Columbia root-knot nematode in Solanum ssp. and in hybrids of S. hougasii with tetraploid cultivated potato. American Potato Journal 68: 445–452.CrossRefGoogle Scholar
  5. Brown, C.R., H. Mojtahedi, and G.S. Santo. 1999. Genetic analysis of resistance to Meloidogyne chitwoodi introgressed from Solanum hougasii into cultivated potato. Journal of Nematology 31: 264–271.PubMedPubMedCentralGoogle Scholar
  6. Brown, C.R., H. Mojtahedi, S. James, R.G. Novy, and S. Love. 2006. Development and evaluation of potato breeding lines with introgressed resistance to Columbia root-knot nematode (Meloidogyne chitwoodi). American Journal of Potato Research 83: 1–8.CrossRefGoogle Scholar
  7. Brown, C.R., H. Mojtahedi, L.-H. Zhang, and E. Riga. 2009. Independent resistant reactions expressed in root and tuber of potato breeding lines with introgressed resistance to Meloidogyne chitwoodi. Phytopathology 99: 1085–1089.CrossRefPubMedGoogle Scholar
  8. Brown, C.R., L. Zhang, and H. Mojtahedi. 2014. Tracking the R Mc1 gene for resistance to race 1 of Columbia root-knot nematode (Meloidogyne chitwoodi) in three Mexican wild potato species with different ploidies. American Journal of Potato Research 91: 180–185.CrossRefGoogle Scholar
  9. Castagnone-Sereno, P. 2002. Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica 124: 193–199.CrossRefGoogle Scholar
  10. Griffin, G.D., and K.B. Jensen. 1997. Importance of temperature in the pathology of Meloidogyne hapla and M. chitwoodi on legumes. Journal of Nematology 29: 112–116.PubMedGoogle Scholar
  11. Haynes, K.G., and X. Qu. 2016. Late blight and early blight resistance from Solanum hougasii introgressed into Solanum tuberosum. American Journal of Potato Research 93: 86–95.CrossRefGoogle Scholar
  12. Janssen, G.J.W., A. van Norel, B. Verkerk-Bakker, and R. Janssen. 1996. Resistance to Meloidogyne chitwoodi, M. fallax and M. hapla in wild tuber-bearing Solanum spp. Euphytica 92: 287–294.CrossRefGoogle Scholar
  13. Janssen, G.J.W., A. van Norel, B. Verkerk-Bakker, and R. Janssen. 1997. Intra- and interspecific variation of root-knot nematodes, Meloidogyne spp., with regard to resistance in wild tuber-bearing Solanum species. Fundam Appl Nematol 20: 449–457.Google Scholar
  14. Janssen, G.J.W., O.E. Scholten, A. van Norel, and C.J. Hoogendorn. 1998. Selection of virulence in Meloidogyne chitwoodi to resistance in the wild potato Solanum fendleri. European Journal of Plant Pathology 104: 645–651.CrossRefGoogle Scholar
  15. de Mendiburu, F. 2017. agricolae: statistical procedures for agricultural research. R package version 1.2-5. URL
  16. Milligan, S.B., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, and V.M. Williamson. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307–1319.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mitkowski, N.A., and G.S. Abawi. 2003. Root-knot nematodes. The Plant Health Instructor.
  18. Mojtahedi, H., G.S. Santo, and J.H. Wilson. 1988. Host tests to differentiate Meloidogyne chitwoodi races 1 and 2 and M. hapla. Journal of Nematology 20: 468–473.PubMedGoogle Scholar
  19. Mojtahedi, H., G.S. Santo, C.R. Brown, H. Ferris, and V. Williamson. 1994. A new host race of Meloidogyne chitwoodi from California. Plant Disease 78: 1010.CrossRefGoogle Scholar
  20. Mojtahedi, H., C.R. Brown, E. Riga, and L.-H. Zhang. 2007. A new pathotype of Meloidogyne chitwoodi race 1 from Washington state. Plant Disease 91: 1051.CrossRefGoogle Scholar
  21. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.CrossRefGoogle Scholar
  22. Nyczepir, A.P., J.H. O’Bannon, G.S. Santo, A.M. Finley. 1982. Incidence and distinguishing characteristics of Meloidogyne chitwoodi and M. hapla in potato from the northwestern United States. Journal of Nematology 14:347-353.Google Scholar
  23. Pinkerton, J.N., H. Mojtahedi, and G.S. Santo. 1987. Reproductive efficiency of Pacific Northwest populations of Meloidogyne chitwoodi on alfalfa. Plant Disease 71: 345–348.CrossRefGoogle Scholar
  24. Powers, T.O., P.G. Mullin, T.S. Harris, L.A. Sutton, and R.S. Higgins. 2005. Incorporating molecular identification of Meloidogyne spp. Into a large-scale regional nematode survey. Journal of Nematology 37: 226–235.PubMedGoogle Scholar
  25. R Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  26. Santo, G.S., and J.N. Pinkerton. 1985. A second host race of Meloidogyne chitwoodi discovered in Washington. Plant Disease 69: 631.Google Scholar
  27. Spooner, D.M., S.H. Jansky, and R. Simon. 2009. Tests of taxonomic and biogeographic predictivity: resistance to disease and insect pests in wild relatives of cultivated potato. Crop Science 49: 1367–1376.CrossRefGoogle Scholar
  28. Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky, and T. Gavrilenko. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80: 283–383.CrossRefGoogle Scholar
  29. Vos, P., G. Simons, J. Taco, J. Wijbrandi, L. Heinen, R. Hogers, A. Frijters, J. Groenendijk, P. Diergaarde, M. Reijans, J. Fierens-Onstenk, M. de Both, J. Peleman, T. Liharska, J. Hontelez, and M. Zabeau. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnology 16: 1365–1369.CrossRefPubMedGoogle Scholar
  30. Williamson, V.M., and A. Kumar. 2006. Nematode resistance in plants: the battle underground. Trends in Genetics 22: 396–403.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Ryan C. Graebner
    • 1
    • 2
  • Charles R. Brown
    • 3
  • Russell E. Ingham
    • 4
  • Christina H. Hagerty
    • 5
  • Hassan Mojtahedi
    • 6
  • Richard A. Quick
    • 3
  • Launa L. Hamlin
    • 6
  • Nadine Wade
    • 4
  • John B. Bamberg
    • 7
  • Vidyasagar Sathuvalli
    • 1
    • 2
    Email author return OK on get
  1. 1.Hermiston Agricultural Research & Extension CenterOregon State UniversityHermistonUSA
  2. 2.Department of Crop & Soil ScienceOregon State UniversityCorvallisUSA
  3. 3.USDA-ARS Temperate Tree Fruit and Vegetable Research UnitProsserUSA
  4. 4.Department of Botany & Plant PathologyOregon State UniversityCorvallisUSA
  5. 5.Columbia Basin Agricultural Research CenterOregon State UniversityAdamsUSA
  6. 6.Irrigated Agricultural Research & Extension CenterWashington State UniversityProsserUSA
  7. 7.USDA-ARS, U.S. Potato GenebankSturgeon BayUSA

Personalised recommendations