Advertisement

Effects of Cooking Methods on Nutritional Content in Potato Tubers

  • Sastry S. JayantyEmail author
  • Kalita Diganta
  • Bough Raven
Invited Review
  • 18 Downloads

Abstract

Potato is cultivated worldwide and constitutes a substantial component of the global population’s diet. Potato tubers are rich in carbohydrates and certain vitamins, minerals, phenolic acids, flavonoids, anthocyanins, and other bioactive compounds. The cooking process makes potatoes palatable by inducing changes in chemical composition. Nutritional value is enhanced through increased digestion and bioavailability of nutrients. Food safety and sensory qualities including taste, texture, and flavor are improved during cooking. Other chemical constituents in tubers, such as glycoalkaloids, phenolic, and umami compounds, contribute to potato flavor. Cooking methods such as boiling, baking, microwaving, and frying can alter nutritional value and lead to the formation of anti-nutrient compounds, including acrylamide. Recently published articles have shown that there are many ways to decrease undesirable reactions during cooking while enhancing nutrient bioavailability, specifically through the use of relatively low cooking temperatures and shorter cooking times, and cooking under vacuum. This review focuses on the changes during cooking in compounds that contribute to the nutritional content of potatoes.

Graphical Abstract

Effect of cooking methods such as a) baking, b) microwaving, c) boiling and d) frying on nutrients in potato cultivars with distinct flesh and skin color such as red, purple, yellow and white. Nutrients included Vitamin C (Vit C), total phenolics (TP), total anthocyanin (TA), antioxidant activity (AA), total carotenoids (TC), and total glycoalkaloids (TG). This figure represents data from Perla et al. 2012, Tian et al. 2016a, b, Blessington et al. 2010, Lemos et al. 2015, Lachman et al. 2013. Negative values indicate loss and positive values indicate the gain of phytonutrients.

Keywords

Cooking methods Nutrition Flavor Potato Tuber 

Resumen

La papa se consume en todo el mundo y constituye un componente substancial de la dieta de la población global. Los tubérculos de papa son ricos en carbohidratos y en ciertas vitaminas, minerales, ácidos fenólicos, flavonoides, antocianinas, y otros compuestos bioactivos. El proceso del cocinado hace de la papa apetecible mediante la inducción de cambios en la composición química. El valor nutricional se incrementa a través del aumento en la digestión y biodisposibilidad de nutrientes. La seguridad alimentaria y las cualidades sensoriales incluyendo el gusto, la textura y el sabor se mejoran durante el cocinado. Otros constituyentes químicos en tubérculos, tales como glicoalcaloides, fenoles y compuestos acentuadores de sabor (umami), contribuyen al sabor de la papa. Los métodos de cocinado, como hervido, horno convencional o de microondas y freído pueden alterar el valor nutritivo y conducir a la formación de compuestos anti-nutrientes, incluyendo acrilamida. Artículos de reciente publicación han mostrado que hay muchas maneras para disminuir reacciones indeseables durante el cocinado mientras que se aumenta la biodisponibilidad de nutrientes, especialmente a través del uso de temperaturas relativamente bajas de cocinado, con tiempos más cortos y cocinando bajo vacío. Esta revisión se enfoca en los cambios durante el cocinado en compuestos que contribuyen al contenido nutricional de las papas.

Notes

Acknowledgments

This work was partially supported by a grant from the Colorado Department of Agriculture through the USDA’s Specialty Crop Block Grant Program (award #10991) and Colorado Potato Administrative Committee Area II.

Compliance with Ethical Standards

Disclaimers

None.

References

  1. Ahn, J.S., L. Castle, D.B. Clarke, A.S. Lloyd, M.R. Philo, and D.R. Speck. 2002. Verification of the findings of acrylamide in heated foods. Food Additives and Contamination 19: 1116–1124.Google Scholar
  2. Amrani-Hemaimi, M., C. Cerny, and L.B. Fay. 1995. Mechanisms of formation of alkylpyrazines in the Maillard reaction. Journal of Agricultural and Food Chemistry 43: 2818–2822.Google Scholar
  3. Bamberg, J., R. Navarre Moehninsi, and J. Suriano. 2015. Variation for tuber greening in the diploid wild potato Solanum microdontum. American Journal of Potato Research 92: 435–443.Google Scholar
  4. Barba, A.A., A. Calabretti, M. d’Amore, A.L. Piccinelli, and L. Rastrelli. 2008. Phenolic constituent levels in cv. Agria potato under microwave processing. Food Science and Technology 41: 1919–1926.Google Scholar
  5. Becalski, A., Lau, B.P.Y., Lewis, D., and S.W. Seaman. 2003. Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry 51: 802–808.Google Scholar
  6. Becalaski, A., B.P.-Y. Lau, D. Lewis, S.W. Seaman, S. Hayward, M. Sahagian, M. Ramesh, and Y. Leclerc. 2004. Acrylamide in French fries: Influence of free amino acids and sugars. Journal of Agricultural and Food Chemistry 52: 3801–3806.Google Scholar
  7. Bethke, P.C., and S.H. Jansky. 2008. The effects of boiling and leaching on the content of potassium and other minerals in potatoes. Journal of Food Science 73: 80–85.Google Scholar
  8. Binner, S., W.G. Jardine, C.M.C.G. Renard, and M.C. Jarvis. 2000. Cell wall modifications during cooking of potatoes and sweet potatoes. The Journal of Food and Agriculture 80: 216–218.Google Scholar
  9. Blanda, G., L. Cerretani, P. Comandini, and T.G. Toschi. 2010. Investigation of off-odour and off-flavour development in boiled potatoes. Food Chemistry 118: 283–290.Google Scholar
  10. Blessington, T., M.N. Nzaramba, D.C. Scheuring, A.L. Hale, L. Reddivari, and J.C. Miller. 2010. Cooking methods and storage treatments of potato: Effects on carotenoids, antioxidant activity, and phenolics. American Journal of Potato Research 87 (6): 479–491.Google Scholar
  11. Brown, C.R. 2005. Antioxidants in potato. American Journal of Potato Research 82: 163–172.Google Scholar
  12. Brown, C.R., R.W. Durst, R. Wrolstad, and W. De Jong. 2008. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Research 51 (3–4): 259–270.Google Scholar
  13. Burg, P., and P. Fraile. 1995. Vitamin C destruction during the cooking of a potato dish. LWT – Food Science and Technology 28 (5): 506–514.Google Scholar
  14. Burgos, G., W. Amoros, E. Salas, L. Muñoa, P. Sosa, C. Díaz, et al. 2012. Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chemistry 133(4), 1131 1137.Google Scholar
  15. Burgos, G., W. Amoros, L. Muñoa, P. Sosa, E. Cayhualla, C. Sanchez, C. Díaz, and M. Bonierbale. 2013. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. Journal of Food Composition and Analysis 30 (1): 6–12.Google Scholar
  16. Burlingame, B., B. Mouillé, and R. Charrondière. 2009. Nutrients, bioactive nutrients, and anti-nutrients in potatoes. Journal of Food Composition and Analysis 22 (6): 494–502.Google Scholar
  17. Burmeister, A., S. Bondiek, L. Apel, C. Kühne, S. Hillebrand, and P. Fleischmann. 2011. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. Journal of Food Composition and Analysis 24 (6): 865–872.Google Scholar
  18. Buttery, R.G., R.M. Seifert, D.G. Guadagni, and L.C. Ling. 1971. Characterization of volatile Pyrazine and pyridine components of potato chips. Journal of Agricultural and Food Chemistry. 19: 969–971.Google Scholar
  19. Calleman, C.J., E. Bergmark, L.G. Stern, and L.G. Costa. 1993. A nonlinear dosimetric model for hemoglobin adduct formation by the neurotoxic agent acrylamide and its genotoxic metabolite glycidamide. Environmental Health Perspective 99: 221–223.Google Scholar
  20. Charepalli, V., Reddivari, L., Radhakrishnan, S., Vadde, R., Agarwal, R., and J.K. Vanamala. 2015. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. Journal of Nutritional Biochemistry 26: 1641–1649.Google Scholar
  21. Chiavaro, E., D. Barbanti, E. Vittadini, and R. Massini. 2006. The effect of different cooking methods on the instrumental quality of potatoes (cv. Agata). Journal of Food Engineering 77: 169–178.Google Scholar
  22. Cieslik, E. 1995. The effect of cooking processes on glycoalkaloids content in potato tubers. Zesz Nauk AR w Krakowie 342: 15–22.Google Scholar
  23. Cook, D.J., and A.J. Taylor. 2005. On-line MS/MS monitoring of acrylamide generation in potato- and cereal-based systems. Journal of Agricultural and Food Chemistry 53: 8926–8933.Google Scholar
  24. Dao, L., and M. Friedman. 1992. The chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. Journal of Agricultural and Food Chemistry 40: 2152–2156.Google Scholar
  25. Dini, I., G.C. Tenore, and A. Dini. 2013. Effect of industrial and domestic processing on antioxidant properties of pumpkin pulp. LWT- Food Science and Technology 53 (1): 382–385.  https://doi.org/10.1016/j.lwt.2013.01.005.Google Scholar
  26. Ezekiel, R., N. Singh, S. Sharma, and A. Kaur. 2013. Beneficial phytochemicals in potato – A review. Food Research International 50: 487–496.Google Scholar
  27. Faller, A.L.K., and E. Fialho. 2009. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International 42 (1): 210–215.Google Scholar
  28. Fiselier, K., and K. Grob. 2005. Legal limit for reducing sugars in prefabricates targeting 50 μg/kg acrylamide in French fries. European Food Research Technology 220: 451–458.Google Scholar
  29. Friedman, M., and C.E. Levin. 2008. Review of methods for the reduction of dietary content and toxicity of acrylamide. Journal of Agricultural Food Chemistry 56(15): 6113–40.  https://doi.org/10.1021/jf0730486.
  30. Friedman, M. 2003. Chemistry, biochemistry, and safety of acrylamide: A review. Journal of Agricultural and Food Chemistry 51: 4504–4526.Google Scholar
  31. Friedman, M. 2006. Potato glycoalkaloids and metabolites: Role in the plant and in the diet. Journal of Agricultural and Food Chemistry 54: 8655–8681.Google Scholar
  32. Gahler, S., K. Otto, and V. Bohm. 2003. Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. Journal of Agricultural and Food Chemistry 51 (27): 7962–7968.  https://doi.org/10.1021/jf034743q.Google Scholar
  33. Garcia-Alonso, A., and I. Goni. 2000. Effect of processing on potato starch: In vitro availability and glycemic index. Nahrung-Food 44 (1): 19–22.Google Scholar
  34. Garcia-Segovia, P., A. Andres-Bello, and J. Martinez-Monzo. 2008. Textural properties of potatoes (Solanum tuberosum L., cv. Monalisa) as affected by different cooking processes. Journal of Food Engineering 88 (1): 28–35.Google Scholar
  35. Gokmen, V., and H.Z. Senyuva. 2007. Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chemistry 103: 196–203.Google Scholar
  36. Gołaszewska, B., and S. Zalewski. 2001. Optimisation of potato quality in culinary process. Polish Journal of Food and Nutrition Sciences 10/51 (1): 59–63.Google Scholar
  37. Granda, C., R.G. Moreira, and S.E.J. Tichy. 2004. Reduction of acrylamide formation in potato chips by low temperature vacuum frying. Journal of Food Science 69: 405–411.Google Scholar
  38. Grudzińska, M., Z. Czerko, K. Zarzyńska, and M.B. Komenda. 2016. Bioactive compounds in potato tubers: Effects of farming system, cooking method, and flesh color. Plos One 3: 1–13.Google Scholar
  39. Guadagni, D.G., R.G. Buttery, R.M. Seifert, and D.W. Venstrom. 1971. Flavor enhancement of potato products. Journal of Food Science 36: 363–366.Google Scholar
  40. Halford, N.G., N. Muttucumaru, S.J. Powers, P.N. Gillat, L. Hartley, S.J. Elmore, and D.S. Mottram. 2012. Concentrations of free amino acids and sugars in nine potato varieties: Effects of storage and relationship with acrylamide formation. Journal of Agricultural and Food Chemistry 60: 12044–12055.Google Scholar
  41. Holt, S.H., J.C. Miller, P. Petocz, and E. Farmakalidis. 1995. A satiety index of common foods. European Journal of Clinical Nutrition 49: 675–690.Google Scholar
  42. Hu, X., B. Guo, C. Liu, X. Yan, J. Chen, S. Luo, Y. Liu, H. Wang, R. Yang, Y. Zhong, and J. Wu. 2018. Modification of potato starch by using superheated steam. Carbohydrate Polymers 198: 375–384.  https://doi.org/10.1016/j.carbpol.2018.06.110.Google Scholar
  43. IARC 1994. Monographs on the evaluation of carcinogenic risks to humans Volume 60, Some Industrial Chemicals Lyon 389–433.Google Scholar
  44. Josephson, D.B., and R.C. Lindsay. 1987. c4-heptenal: An influential volatile compound in boiled potato flavor. Journal of Food Science 52: 328–331.Google Scholar
  45. Kader, Adel A. 2008. Perspective: Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture 88: 1863–1868.Google Scholar
  46. Kalita, D., and S.S. Jayanty. 2012. Reduction of acrylamide formation by vanadium salt in potato French fries and chips. Food Chemistry 138: 644–649.Google Scholar
  47. Kalita, D., and S.S. Jayanty. 2017. Nutrient Composition of Continuous and Kettle Cooked Potato Chips from Three Potato Cultivars. Current Research in Nutrition and Food Science Journal 5 (2): 75–88.Google Scholar
  48. Kalita, D., D.G. Holm, and S.S. Jayanty. 2013. The role of polyphenols in acrylamide formation in the fried product of potato tubers with colored flesh. Food Research International 54: 753–759.Google Scholar
  49. Kaur, L., N. Singh, N.S. Sodhi, and H.S. Gujral. 2002. Some properties of potatoes and their starches. Cooking, textural and rheological properties of potatoes. Food Chemistry 79 (2): 177–181.Google Scholar
  50. Kita, A., E. Bråthen, S.H. Knutsen, and T. Wicklund. 2004. Effective ways of decreasing acrylamide content in potato crisps during processing. Journal of Agricultural and Food Chemistry 52: 7011–7015.Google Scholar
  51. Kita, A., A. Bakowska-Barczak, K. Hamouz, K. Kułakowska, and G. Lisinska. 2013. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple fleshed potatoes (Solanum tuberosum L.). Journal of Food Composition and Analysis 32 (2): 169–175.Google Scholar
  52. Koehler, P.E., and G.V. Odell. 1970. Factors affecting the formation of pyrazine compounds in sugar-amine reactions. Journal of Agricultural and Food Chemistry 18: 895–898.Google Scholar
  53. Külen, O., C. Stushnoff, and D.G. Holm. 2013. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. Journal of Science, Food and Agriculture 93: 2437–2444.Google Scholar
  54. Lachman, J., and K. Hamouz. 2005. Red and purple colored potatoes as a significant antioxidant source of human nutrition – A review. Plant, Soil and Environment 51: 477–482.Google Scholar
  55. Lachman, J., Hamouz, K., Orsák, M., Pivec, V., Hejtmánková, K., Pazderů, K., Dvořák, P., and J. Čepl. 2012. Impact of selected factors – Cultivar, storage, cooking and baking on the content of anthocynins in coloured-flesh potatoes. Food Chemistry 133: 1107–1116.Google Scholar
  56. Lachman, J., K. Hamouz, J. Musilová, K. Hejtmánková, Z. Kotíková, K. Pazderu, et al. 2013. Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chemistry 138: 1189–1197.Google Scholar
  57. Larder, C.E., M. Abergel, S. Kubow, and D.J. Donnelly. 2018. Freeze drying affects the starch digestibility of cooked potato tubers. Food Research International 103: 208–214.Google Scholar
  58. Lemos, M.A., M.M. Aliyu, and G. Hungerford. 2015. Influence of cooking on the levels of bioactive compounds in purple majesty potato observed via chemical and spectroscopic means. Food Chemistry 173: 462–467.Google Scholar
  59. Liu, Q., R. Tarn, D. Lynch, and N.M. Skjodt. 2007. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry 105 (3): 897–907.Google Scholar
  60. Love, S.L., and J.J. Pavek. 2008. Positioning the potato as a primary food source of vitamin C. American Journal of Potato Research 85 (4): 277–285.Google Scholar
  61. Maga, J.A. 1994. Potato flavor. Food Reviews International 10: 1–48.Google Scholar
  62. Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., and C.R. Lerici. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology 11(9–10): 340–346.Google Scholar
  63. McGill, C.R., A.C. Kurilich, and J. Davignon. 2013. The role of potatoes and potato components in cardiometabolic health: A review. Annals of Medicine 45 (7): 467–473.Google Scholar
  64. Medeiros Vinci, R., F. Mestdagh, and B. De Meulenaer. 2012. Acrylamide formation in fried potato products: Present and future, a critical review on mitigation strategies. Food Chemistry 15: 1138–1154.Google Scholar
  65. Mestdagh, F., J. Maertens, T. Cucu, K. Delporte, C. Van Peteghem, and B. De Meulenaer. 2008. Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chemistry 107: 26–31.Google Scholar
  66. Monro, J., S. Mishra, E. Blandford, J. Anderson, and R. Genet. 2009. Potato genotype differences in nutritionally distinct starch fractions after cooking and cooking plus storing cool. Journal of Food Composition and Analysis 22 (6): 539–545.Google Scholar
  67. Mottram, D.S., B.L. Wedzicha, and A.T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448–449.Google Scholar
  68. Mulinacci, N., F. Ieri, C. Giaccherini, M. Innocenti, L. Andrenelli, G. Canova, and M.C. Casiraghi. 2008. Effect of cooking on the anthocyanins, phenolic acids,glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. Journal of Agricultural and Food Chemistry 56 (24): 11830–11837.Google Scholar
  69. Murador, D., A.R. Braga, D. Da Cunha, and V. De Rosso. 2018. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta analytic investigation. Critical reviews in Food Scienc and Nutrition 58: 169–177.Google Scholar
  70. Murniece, I., D. Karklina, R. Galoburda, D. Santare, I. Skrabule, and H.S. Costa. 2011. Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods. Journal of Food Composition and Analysis 24 (4–5): 699–710.Google Scholar
  71. Navarre, D.A., R. Shakya, J. Holden, and S. Kumar. 2010. The effect of different cooking methods on phenolics and vitamin C in developmentally young potato tubers. American Journal of Potato Research 87 (4): 350–359.Google Scholar
  72. Navarre, D., S.S. Pillai, R. Shakya, and M.J. Holden. 2011. HPLC profiling of phenolics in diverse potato genotypes. Food Chemistry. 127: 34–41.Google Scholar
  73. Nemś, A., A. Pęksa, A.Z. Kucharska, A. Sokół-Łętowska, A. Kita, W. Drożdż, and K. Hamouz. 2015. Anthocyanin and antioxidant activity of snacks with coloured potato. Food Chemistry 172: 175–182.Google Scholar
  74. Nursten, H.E., and M.R. Sheen. 1974. Volatile flavor components of cooked potato. Journal of the Science of Food and Agriculture 25: 643–663.Google Scholar
  75. Orsak, M., J. Lachman, M. Vejdova, V. Pivec, and K. Hamouz. 2001. Changes of selected secondary metabolites in potatoes and buckwheat caused by UV, gamma- and microwave irradiation. Rostlinna Vyroba 47: 493–500.Google Scholar
  76. Palazoglu, T.K., D. Savran, and V. Gokmen. 2010. Effect of cooking method (baking compared with frying) on acrylamide level of potato chips. Journal of Food Science 75: 25–29.Google Scholar
  77. Pareles, S.R., and S.C. Chang. 1974. Identification of compounds responsible for baked potato flavor. Journal of Agricultural and Food Chemistry 22: 340–342.Google Scholar
  78. Peksa, A., G. Gołubowska, E. Rytel, G. Lisin’ska, and K. Aniołowski. 2006. Changes of glycoalkaloids and nitrate contents in potatoes during chip processing. Food Chemistry 97: 151–156.Google Scholar
  79. Perla, V., D.G. Holm, and S.S. Jayanty. 2012. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT – Food Science and Technology 45 (2): 161–171.Google Scholar
  80. Petersen, Mikael Agerlin, L. Poll, and L.M. Larsen. 1998. Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odor profiling and GC-MS. Food Chemistry 61: 461–466.Google Scholar
  81. Pillai, S.S., R.A. Du, and J. Bamberg Navarre. 2013. Analysis of polyphenols, anthocyanins, and carotenoids in tubers from Solanum tuberosum group phureja, stenotomum and andigena. American Journal of Potato Research 90: 440–450.Google Scholar
  82. Ruiz-Rodriguez, A., F.R. Maŕin, A. Ocaña, and C. Soler-Rivas. 2008. Effect of domestic processing on bioactive compounds. Phytochemistry Reviews 7: 345–384.Google Scholar
  83. Rytel, E., G. Gołubowska, G. Lisinska, A. Peksa, and K. Aniołowski. 2005. Changes in glycoalkaloids and nitrate contents in potatoes during French fries processing. Journal of the Science of Food and Agriculture 85: 879–882.Google Scholar
  84. Rytel, E., A. Tajner-Czopek, M. Aniołowska, and K. Hamouz. 2013. The influence of dehydrated potatoes processing on the glycoalkaloids content in colored fleshed potato. Food Chemistry 141 (3): 2495–2500.Google Scholar
  85. Silva, E.M., and P.W. Simon. 2005. Genetic, physiological and environmental factors affecting acrylamide concentration in fried potato products. Advances in Experimental Medicine and Biology 561: 371–386.Google Scholar
  86. Sinden, S.L., K.L. Deahl, and B.B. Aulenbach. 1976. Effect of glycoalkaloids and phenolics on potato flavor. Journal of Food Science 41: 520–523.Google Scholar
  87. Stadler, R.H., and G. Scholz. 2004. Acrylamide: An update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutrition Reviews 62: 449–467.Google Scholar
  88. Stushnoff, C., D.G. Holm, M.D. Thompson, W. Jiang, H.J. Thompson, N.I. Joyce, and P. Wilson. 2008. Antioxidant properties of cultivars and selections from the Colorado potato breeding program. American Journal of Potato Research 85: 267–276.Google Scholar
  89. Tahvonen, R., R.M. Hietanen, J. Sihvonen, and E. Salminen. 2006. Influence of different processing methods on the glycemic index of potato (Nicola). Journal of Food Composition and Analysis 19: 372–378.Google Scholar
  90. Tajner-Czopek, A., E. Rytel, A. Kita, A. Pesksa, and K. Hamouz. 2012. The influence of thermal process of coloured potatoes on the content of glycoalkaloids in the potato products. Food Chemistry 133: 1117–1122.Google Scholar
  91. Tereke, E., P. Rydberg, P. Karlsson, S. Eriksson, and M. Törnqvist. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50: 4998–5006.Google Scholar
  92. Thed, S.T., and R.D. Phillps. 1995. Changes in dietary fiber and starch composition of processed potato products during domestic cooking. Food Chemistry 52: 301–304.Google Scholar
  93. Tian, J.H., J.L. Chen, F.Y. Lv, S.G. Chen, J.C. Chen, et al. 2016a. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chemistry 197: 1264–1270.Google Scholar
  94. Tian, J., J.J. Chen, X. Ye, and S. Chen. 2016b. Health benefits of the potato affected by domestic cooking: A review. Food Chemistry 202: 165–175.Google Scholar
  95. van Dijk, C., M. Fischer, J. Holm, J.G. Beekhuizen, T. Stolle-Smits, and C. Boeriu. 2002. Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy. Agricultural Food Chemistry 50 (18): 5082–5088.Google Scholar
  96. Vinci, R.M., F. Mestdagh, and B.D. Meulenaer. 2011. Acrylamide formation in fried potato products – Present and future, a critical review on mitigation strategies. Food Chemistry 133: 1138–1154.Google Scholar
  97. Vivanti, V., E. Finnoti, and M. Friedman. 2006. Level of acrylamide precursors asparagine, fructose, glucose, and sucrose in potatoes sold at retail in Italy and in the United States. Journal of Food Science 71: 8185.Google Scholar
  98. Wagner, R., and W. Grosch. 1997. Evaluation of potent odorants of French fries. Lebensm.-Wiss. U-Technology 30: 164–169.Google Scholar
  99. Xu, B., and S.K. Chang. 2008. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chemistry 110 (1): 1–13.Google Scholar
  100. Xu, B., and S.K. Chang. 2009. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. Journal of Agricultural Food Chemistry. 57 (11): 4754–4764.  https://doi.org/10.1021/jf900695s.Google Scholar
  101. Yadav, B.S. 2011. Effect of frying, baking and storage conditions on the resistant starch content of foods. British Food Journal 113 (6): 710–718.Google Scholar
  102. Yang, Y., and I.M.P. Achaerandio. 2016. Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chemistry 197: 1301–1310.Google Scholar
  103. Yuan, Y., F. Chen, G.H. Zhao, J. Liu, H.X. Zhang, and X.S. Hu. 2007. A comparative study of acrylamide formation induced by microwave and conventional heating methods. Journal of Food Sciences 72: 212.Google Scholar
  104. Zhang, Y., J. Chen, X. Zhang, X. Xu, and Y. Zhang. 2007. Addition of antioxidants of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries. Journal of Agricultural and Food Chemistry. 55: 523–528.Google Scholar
  105. Zhang, Y., Y. Ren, and Y. Zhang. 2009. New research developments on acrylamide: Analytical chemistry, formation mechanism, and mitigation recipes. Chemical Reviews. 109: 4375–4397.Google Scholar
  106. Zhu, F., Yi Zhong Cai, Jinxia Ke, and Harold Corke. 2010. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. Journal of the Science of Food and Agriculture 90: 2254–2262.Google Scholar
  107. Zhu, Y., Joanne A. Lasradoa, and H. Jiang. 2017. Potato protease inhibitor II suppresses postprandial appetite in healthy women: A randomized double-blind placebo-controlled trial. Food & Function 8: 1988–1993.Google Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Sastry S. Jayanty
    • 1
    Email author
  • Kalita Diganta
    • 1
  • Bough Raven
    • 1
  1. 1.San Luis Valley Research Center, Department of Horticulture and Landscape ArchitectureColorado State UniversityCenterUSA

Personalised recommendations