Advertisement

Salicylic Acid-Cryotherapy Treatment for Elimination of Potato Virus S from Solanum Tuberosum

  • Diana R. Ruiz-Sáenz
  • Diana D. Ayala-Hernández
  • Takao Niino
  • Esmeralda J. Cruz-Gutiérrez
  • Jesús G. Aquino-Martínez
  • Humberto A. López-DelgadoEmail author
Article
  • 39 Downloads

Abstract

Potato virus S (PVS) is one of the most difficult viruses to eliminate by thermotherapy due to its thermal deactivation point. Pre-treatment methods involving salicylic acid (SA) have been successfully carried in conjugation with cryogenic methods to reduce oxidative damage and eliminate viruses. In the present investigation, the effect of SA to protect Solanum tuberosum plants infected with PVS from oxidative damage from subsequent cryotherapy was studied. Vulnerable genotypes to cryogenic protocol were selected, with two SA treatments examined. Potato clones were pretreated with SA (0, 10−5, and 10−6 M), plant development was evaluated and then exposed to cryotherapy. This was followed up by a plant development evaluation and virus testing. After the initial treatment with SA, the plants exhibited an increase in the variables evaluated before cryotherapy. After cryotherapy, between 66.6% and 100% of the treated plants were found to be virus-free compared to control plants which exhibited 0% survival. Thus, the SA-cryotherapy treatment combination described appears to enhance plant survival and eliminate PVS from potato plants.

Keywords

Virosis Virus cleaning Therapy Cryogenic method Salicylate Oxidative damage 

Resumen

El virus de la papa S (PVS) es uno de los más difíciles de eliminar por termoterapia debido a su punto de desactivación térmica. Los pretratamientos de ácido salicílico (AS) se han probado con éxito en métodos criogénicos para reducir el daño oxidativo y para la limpieza del virus mediante termoterapia. En la presente investigación, se estudió el efecto de AS como protector al daño oxidativo por crioterapia en plantas de Solanum tuberosum infectadas con PVS. Genotipos vulnerables a protocolo criogénico fueron seleccionados y probados con dos tratamientos de AS. Clones de papa fueron pretratados con AS (0, 10−5, and 10−6 M), se evaluó el desarrollo de las plantas y posteriormente se expusieron a crioterapia, seguido de evaluación del desarrollo de las plantas y prueba de presencia de virus. Las plantas tratadas con AS aumentaron las variables evaluadas antes de la crioterapia. Después de la crioterapia, se obtuvo un 66.6–100% de plantas libres de virus en comparación con el testigo, que mostró una supervivencia del 0%. La combinación de crioterapia AS mejoró la supervivencia y, por lo tanto, facilitó la limpieza de virus PVS.

Notes

Acknowledgments

We knowledge to M.C. Guadalupe Ríos Dominguez and Ing Rocio Sara Valentina Hernández Sánchez, from the pathology laboratory of ICAMEX for performing DAS-ELISA tests.

References

  1. Aguilar-Camacho, M., M. Mora-Herrera, and H. López-Delgado. 2016. Potato virus X (PVX) elimination a short- and long-term effects of hydrogen peroxide and salicylic acid is differentially mediated by oxidative stress in synergism. American Journal of Potato Research 9: 360–367.Google Scholar
  2. Arfan, M., H.R. Athar, and M. Ashraf. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology 164 (6): 685–694.Google Scholar
  3. Arizaga, M.V., O.F.V. Navarro, C.R.C. Martínez, E.J.C. Gutiérrez, H.A.L. Delgado, S.I. Yamamoto, and T. Niino. 2016. Improvement to the D Cryo-plate protocol applied to practical cryopreservation of in vitro grown potato shoot tips. The Horticulture Journal 86 (2): 222–228.Google Scholar
  4. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141 (2): 391–396.Google Scholar
  5. Benson, E.E., M. Wilkinson, A. Todd, U. Ekuere, and J. Lyon. 1996. Developmental competence and ploidy stability in plants regenerated from cryopreserved potato shoot-tips. CryoLetters 17: 119–128.Google Scholar
  6. Bittner, H., G. Schenk, G. Schuster, and S. Kluge. 1989. Elimination by chemotherapy of potato virus S from potato plants grown in vitro. Potato Research 32: 175–179.Google Scholar
  7. Brison, M., M.T. Boucaud, A. Pierronnet, and F. Dosba. 1997. Effect of cryopreservation on the sanitary state of a cv prunus rootstock experimentally contaminated with plum pox potyvirus. Plant Science 123: 189–196.Google Scholar
  8. Cassels, A.C., and R.D. Long. 1982. The elimination of potato viruses X, Y, S and M in meristem and explants culture of potato in the presence of virazole. Potato Research 25: 165–173.Google Scholar
  9. Chen, Z., H. Silva, and D.F. Klessig. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262 (5141): 1883–1886.Google Scholar
  10. Chen, Z., J. Malamy, J. Henning, U. Conrath, P. Sánchez-Casas, H. Silva, and D.K. Klessig. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proceedings of the National Academy of Sciences 92 (10): 4134–4137.Google Scholar
  11. Chen, G.Q., L. Ren, J. Zhang, B.M. Reed, D. Zhang, and X.H. Shen. 2015. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology 70 (1): 38–47.Google Scholar
  12. Chinnusamy, V., J. Zhu, and J.K. Zhu. 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science 12 (10): 444–451.Google Scholar
  13. Clark, M.F., and A.N. Adams. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34 (3): 475–483.Google Scholar
  14. Dat, J., S. Vandenabeele, E. Vranová, M. Van Montagu, D. Inzé, and F. Van Breusegem. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57 (5): 779–795.Google Scholar
  15. De Bokx, J.A. 1972. Spread of potato virus S. Potato Research 15 (1): 67–70.Google Scholar
  16. Ding, F., S. Jin, N. Hong, Y. Zhong, Q. Cao, G. Yi, and G. Wang. 2008. Vitrification–cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Reports 27 (2): 241–250.Google Scholar
  17. Dowling, D. K. and L. W. Simmons 2009. Reactive oxygen species as universal constraints in life-history evolution. Proceedings of the Royal Society of London B: Biological Sciences. rspb-2008.Google Scholar
  18. Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11 (1): 1–42.Google Scholar
  19. Echevarría-Machado, I., R.M. Escobedo-G.M., and A. Larqué-Saavedra. 2007. Plant Physiology and Biochemistry 45: 501–507.Google Scholar
  20. El Tayeb, M.A., and N.L. Ahmed. 2010. Response of wheat cultivars to drought and salicylic acid. American-Eurasian Journal of Agronomy 3: 1–7.Google Scholar
  21. Elwan, M.W.M., and M.A.M. El-Hamahmy. 2009. Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Scientia Horticulturae 122: 521–526.Google Scholar
  22. Espinoza, N.O., R. Estrada, D. Silva-Rodríguez, P. Tovar, R. Lizarraga, and J.H. Dodds. 1986. The potato: A model crop plant for tissue culture. Outlook on Agriculture 15 (1): 21–26.Google Scholar
  23. Faccioli, G., and A. Colombarini. 1996. Correlation of potato virus S and virus M contents of potato meristem tips with the percentage of virus-free plantlets produced in vitro. Potato Research 39: 129–140.Google Scholar
  24. Grout, B.W.W., and G.G. Henshaw. 1978. Freeze preservation of potato shoot-tip cultures. Annals of Botany 42 (181): 1227–1229.Google Scholar
  25. Gutiérrez-Coronado, M.A., C. Trejo-López, and A. Larqué-Saavedra. 1998. Effect of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry 36: 563–565.Google Scholar
  26. Hara, M., J. Furukawa, A. Sato, T. Mizoguchi, and K. Miura. 2012. Abiotic stress and role of salicylic acid in plants. In Abiotic stress responses in plants, 235–251. New York: Springer.Google Scholar
  27. Harding, K., and E.E. Benson. 2001. The use of microsatellite analysis in Solanum tuberosumin vitro plantlets derived from cryopreserved germplasm. Cryo Letters 22 (3): 199–208.Google Scholar
  28. Hayat, S., Q. Fariduddin, B. Ali, and A. Ahmad. 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica 53: 433–437.Google Scholar
  29. Helliot, B., Panis B, Poumay Y, Swennen R, Lepoivre P, and Frison E. 2002. Cryopreservation for elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Reports 20: 1117–1122.Google Scholar
  30. Horvath, E., G. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26 (3): 290–300.Google Scholar
  31. Janda, T., G. Szalai, K. Rios-Gonzalez, O. Veisz, and E. Páldi. 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science 164: 301–306.Google Scholar
  32. Johnston, J.W., K. Harding, and E.E. Benson. 2007. Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Science 172 (3): 524–534.Google Scholar
  33. Kang, H.M., and M.E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum 115 (4): 571–576.Google Scholar
  34. Khan, M.I.R., M. Fatma, T.S. Per, N.A. Anjum, and N.A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6: 462.Google Scholar
  35. Klein, R.E., and C.H. Livingston. 1983. Eradication of potato viruses X and S from potato shoot tip cultures with ribavirin. Phytopathology 73: 1049–1050.Google Scholar
  36. Knörzer, O.C., B. Lederer, J. Durner, and P. Böger. 1999. Antioxidant defense activation in soybean cells. Physiologia Plantarum 107: 294–302.Google Scholar
  37. Kovácik, J., J. Grúz, M. Backor, M. Strnad, and M. Repcák. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports 28: 135–143.Google Scholar
  38. Kushnarenko, S., N.V. Romadanova, M. Aralbayeva, S. Zholamanova, A. Alexandrova, and O. Karpova. 2017. Combined ribavirin treatment and cryotherapy for efficient potato virus M and potato virus S eradication in potato (Solanum tuberosum L.) in vitro shoots. In Vitro Cellular & Developmental Biology. Plant 53: 425–432.Google Scholar
  39. Lambardi and Caccavale. 2000. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Reports 19: 213–218.Google Scholar
  40. Larkindale, J., and B. Huang. 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology 161: 405–413.Google Scholar
  41. Larqué-Saavedra, A., R. Martín-Mex, A. Nexticapan-Garcéz, S. Vergara-Yoisura, and M. Gutiérrez-Rendón. 2010. Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Rev. Chapingo Serie Hortic 16: 183–187.Google Scholar
  42. Li, Y., C. Liu, T. Li, C. Wang, Y. Xiao, L. Zhang, D. Jin, Y. Zhao, Z. Wang, J. Cao, and L. Hao. 2011. Regulatory role of exogenous salicylic acid in the response of Zoysia japonica plants to freezing temperatures: A comparison with cold-acclimatisation. The Journal of Horticultural Science and Biotechnology 86: 277–283.Google Scholar
  43. Lin, Y.H., J.A. Abad, C.J. Maroon-Lango, K.L. Perry, and H.R. Pappu. 2014. Molecular characterization of domestic and exotic potato virus S isolates and a global analysis of genomic sequences. Archives of Virology 159 (8): 2115–2122.Google Scholar
  44. López-Delgado, H., J.F. Dat, C.H. Foyer and. I.M. Scott. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedling. Journal of Experimental Botany 49:713–772.Google Scholar
  45. López-Delgado, H., M.E. Mora-Herrera, H.A. Zavaleta-Mancera, M. Cadena-Hinojosa, and I.M. Scott. 2004. Salicylic acid enhanced heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research 81: 171–176.Google Scholar
  46. López-Delgado, H.A., R. Martínez-Gutiérrez, M.E. Mora-Herrera, and Y. Torres-Valdés. 2018. Induction of freezing tolerance by the application of hydrogen peroxide and salicylic acid as tuber-dip or canopy spraying in Solanum tuberosum L. plants. Potato Research 61 (3): 195–206.Google Scholar
  47. Lynch, P.T., A. Siddika, J.W. Johnston, S.M. Trigwell, A. Mehra, C. Benelli, M. Lambardi, and E.E. Benson. 2011. Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Science 181 (1): 47–56.Google Scholar
  48. Martin, R.R., and J.D. Postman. 1999. Phytosanitary aspects of plant germplasm conservation. Plant Conservation & Biotechnology: 63–82.Google Scholar
  49. Martínez-Gutiérrez, R., M.E. Mora-Herrera, and H.A. López-Delgado. 2012. Exogenous H2O2 in phytoplasma-infected potato plants promotes antioxidant activity and tuber production under drought conditions. American Journal of Potato Research 89 (1): 53–62.Google Scholar
  50. Matos, J., 2004. Efectos de la aplicación de bajas concentraciones de Ácido Salicílico a semillas de tomate (lycopersicom esculentum Mill. variedad Vyta) sobre algunos indicadores fisiológicos y agronómicos. Universidad de Granma. 35p.Google Scholar
  51. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410.Google Scholar
  52. Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9: 490–498.Google Scholar
  53. Miura, K., and Y.Y. Tada. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science 5: 1–12.Google Scholar
  54. Møller, I.M., P.E. Jensen, and A. Hansson. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459–481.Google Scholar
  55. Mora-Herrera, M., and H. López-Delgado. 2006. Tolerancia a baja temperatura inducida por ácido salicílico y peróxido de hidrógeno en microplantas de papa. Revista Fitotecnia Mexicana 29: 81–85.Google Scholar
  56. Mora-Herrera, M.E., H. López-Delgado, A. Castillo-Morales, and C.H. Foyer. 2005. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiologia Plantarum 125 (4): 430–440.Google Scholar
  57. Morelli, J.K., and M.E. Vayda. 1996. Mechanical wounding of potato tubers induces replication of potato virus S. physiological and molecular plant pathology. Physiological and Molecular Plant Pathology 49 (1): 33–47.Google Scholar
  58. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.Google Scholar
  59. Naik, P.S., and S.P. Khurana. 2003. Micropropagation in potato seed production: Need to revise seed certification standards. J. Indian Potato Assoc 30: 267–273.Google Scholar
  60. Niino, T., and M.V. Arizaga. 2015. Cryopreservation for preservation of potato genetic resources. Breeding Science 65 (1): 41–52.Google Scholar
  61. Pathirana, R., A. McLachlan, D. Hedderley, B. Panis, and F. Carimi. 2016. Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiologiae Plantarum 38 (1): 12.Google Scholar
  62. Pennycooke, J.C., and L.E. Towill. 2000. Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Reports 19 (7): 733–737.Google Scholar
  63. Quak, F. 1977. Meristem culture and virus free plants. In Applied and fundamental aspects of plant cell, tissue and organ culture, ed. J. Reinert and Y.P.S. Bajaj, 616–635. New York: Springer-Verlag.Google Scholar
  64. Romero-Romero, M.T., and H.A. López-Delgado. 2009. Ameliorative effects of hydrogen peroxide, ascorbate and dehydroascorbate in Solanum tuberosum infected by phytoplasma. American Journal of Potato Research 86 (3): 218–226.Google Scholar
  65. Rose, D.G. 1983. Some properties of an unusual isolate of potato virus S. Potato Research 26: 49–62.Google Scholar
  66. Sakhabutdinova, A.R., D.R. Fatkhutdinova, M.V. Bezrukova, and F.M. Shakirova. 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 29: 314–319.Google Scholar
  67. Salari, K., H. Massumi, J. Heydarnejad, A. Hosseini, and A. Varsani. 2011. Analysis of Iranian potato virus S isolates. Virus Genes 43: 281–288.Google Scholar
  68. Salisbury, F.B., and C.W. Ross. 1994. Fisiología vegetal, 759. México: Grupo Editorial Iberoamérica.Google Scholar
  69. Sánchez-Chávez, E., R. Barrera-Tovar, E. Muñoz-Márquez, D.L. Ojeda-Barrios, and A. Anchondo-Nájera. 2011. Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional y productividad del chile jalapeño. Revista Chapingo Serie Horticultura 17: 63–66.Google Scholar
  70. Sánchez-Rojo, S., H.A. López-Delgado, M.E. Mora-Herrera, H.I. Almeyda-León, H.A. Zavaleta-Mancera, and D. Espinosa-Victoria. 2011. Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate assimilation. American Journal of Potato Research 88 (2): 175–183.Google Scholar
  71. San-Miguel, R., M. Gutiérrez, and A. Larqué-Saavedra. 2003. Salicylic acid increases the biomass accumulation of Pinus patula. Southern Journal of Applied Forestry 27: 52–54.Google Scholar
  72. Savaldi-Goldstein, S., C. Peto, and J. Chory. 2007. The epidermis both drives and restricts plant shoot growth. Nature 446: 199–202.Google Scholar
  73. Scott, I.M., J.F. Dat, H. López-Delgado, and C.H. Foyer. 1999. Salicylic acid and hydrogen peroxide in abiotic stress signaling in plants. Phyton 39: 13–17.Google Scholar
  74. Serrano, I., M.C. Romero-Puertas, L.M. Sandalio, and A. Olmedilla. 2015. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. Journal of Experimental Botany 66 (10): 2869–2876.Google Scholar
  75. Smirnoff, N. 1996. Botanical briefing: The function and metabolism of ascorbic acid in plants. Annals of Botany 78 (6): 661–669.Google Scholar
  76. Tada-Oikawa, S., T. Kato, K. Kuribayashi, K. Nishino, M. Murata, and S. Kawanishi. 2008. Critical role of hydrogen peroxide in the differential susceptibility of Th1 and Th2 cells to tributyltin-induced apoptosis. Biochemical Pharmacology 75 (2): 552–561.Google Scholar
  77. Takahama, U. 2004. Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews 3 (1–2): 207–219.Google Scholar
  78. Tansgın, E., Ö. Atıcı, B. Nalbantoglu, and L.P. Popova. 2006. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67: 710–715.Google Scholar
  79. Taşgín, E., Ö. Atící, and B. Nalbantoğlu. 2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation 41 (3): 231–236.Google Scholar
  80. Tatone, C., G. Di Emidio, M. Vento, R. Ciriminna, and P.G. Artini. 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecological Endocrinology 26 (8): 563–567.Google Scholar
  81. Thordal-Christensen, H., Z. Zhang, Y. Wei, and D.B. Collinge. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—Powdery mildew interaction. The Plant Journal 11 (6): 1187–1194.Google Scholar
  82. Tucuch, H.C.J., G. Alcántar, and S.A. Larqué. 2015. Efecto del ácido salicílico en el crecimiento de la raíz y biomasa total de plántulas de trigo. Terra Latinoamericana 33 (1): 63–68.Google Scholar
  83. Tucuch-Haas, C.J., G. Alcántar-González, V. Volke-Haller, Y. Salinas-Moreno, L. Trejo-Téllez, and A. Larqué-Saavedra. 2016. Revista Mexicana de Ciencias Agrícolas 7 (3): 709–716.Google Scholar
  84. Villanueva-Couoh, E., G. Alcántar-González, P. Sánchez-García, M. Soria-Fregoso, and A. Larque-Saavedra. 2009. Efecto del ácido salicílico y dimetilsulfóxido en la floración de [Chrysanthemum morifolium (Ramat) Kitamura] en Yucatán. Revista Chapingo Serie Horticultura 15: 25–31.Google Scholar
  85. Wang, Q.C., and J.P.T. Valkonen. 2008a. Elimination of two viruses which interact synergistically from sweetpotato using shoot tip culture and cryotherapy. Journal of Virological Methods 154: 135–145.Google Scholar
  86. Wang, Q.C., and J.P.T. Valkonen. 2008b. Efficient elimination of sweet potato little leaf phytoplasma from sweetpotato by cryotherapy of in vitro grown shoot tips. Plant Pathology 57: 338–347.Google Scholar
  87. Wang, Q., and J.P. Valkonen. 2009. Cryotherapy of shoot tips: Novel pathogen eradication method. Trends in Plant Science 14 (3): 119–122.Google Scholar
  88. Wang, Q., P. Li, Ö. Batuman, R. Gafny, and M. Mawassi. 2003a. Effect of benzyladenine on recovery of cryopreserved shoot tips of grapevine and citrus cultured in vitro. Cryo Letters 24 (5): 293–302.Google Scholar
  89. Wang, Q.C., M. Munir, P. Li, R. Gafny, I. Sela, and E. Tanne. 2003b. Plant Science 165: 321–327.Google Scholar
  90. Wang, Q., Y. Liu, Y. Xie, and M. You. 2006. Cryotherapy of potato shoot tips for efficient elimination of potato leafroll virus (PLRV) and potato virus Y (PVY). Potato Research 49 (2): 119–129.Google Scholar
  91. Wang, Q.C., W.J. Cuellar, M.-L. Rajamäki, Y. Hiraka, and J.P.T. Valkonen. 2008. Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology 9 (2): 237–250.Google Scholar
  92. Wang, Y., Z.M. Yang, Q.F. Zhang, and J.L. Li. 2009. Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine. Biologia Plantarum 53 (1): 179–182.Google Scholar
  93. Waswa, M., R. Kakuhenzire, and M. Ochwo-Semakula. 2017. Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. African Journal of Plant Science 11 (3): 61–70.Google Scholar
  94. Xia, X.J., Y.H. Zhou, K. Shi, J. Zhou, C.H. Foyer, and J.Q. Yu. 2015. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany 66 (10): 2839–2856.Google Scholar
  95. Yamamoto, S., R.T. Wunna, M. Valle Arizaga, K. Fukui, E. Cruz Gutierrez, C. Castillo Martinez, K. Watanabe, and T. Niino. 2015. The aluminum cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. American Journal of Potato Research 92: 250–257.Google Scholar
  96. Yang, L., N. Bihua, J. Liu, and B. Song. 2013. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and Quantitative RT-PCR. American Journal of Potato Research 91: 304–312.Google Scholar
  97. Yardimci, N., K.H. Culal, and Y. Demir. 2015. Detection of PVY, PVX, PVS, PVA, and PLRV on different potato varieties in Turkey using DAS-ELISA. Journal of Agricultural Science and Technology 17 (3): 757–764.Google Scholar
  98. Zarghami Moghaddam, M., M. Shoor, A. Ganjeali, N. Moshtaghi, and A. Tehranifar. 2014. Effect of salicylic acid on morphological and ornamental characteristics of Petunia hybrida at drought stress. Indian Journal of Fundamental and Applied Life Sciences 4: 523–532.Google Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  • Diana R. Ruiz-Sáenz
    • 1
  • Diana D. Ayala-Hernández
    • 1
  • Takao Niino
    • 2
    • 3
  • Esmeralda J. Cruz-Gutiérrez
    • 2
  • Jesús G. Aquino-Martínez
    • 4
  • Humberto A. López-Delgado
    • 1
    Email author
  1. 1.Programa Nacional de PapaInstituto Nacional de Investigaciones Forestales Agropecuarias y PecuariasMetepecMéxico
  2. 2.Centro Nacional de Recursos Genéticos, INIFAPTepatitlán de MorelosMéxico
  3. 3.Gene Research CenterUniversity of TsukubaTsukubaJapan
  4. 4.Laboratorio de Fitopatología, ICAMEXMetepecMéxico

Personalised recommendations