American Journal of Potato Research

, Volume 95, Issue 2, pp 123–129 | Cite as

The Impact of Retail Light Source on Greening of Russet Burbank Potato Tubers

  • Nora L. Olsen
  • Tina Brandt
  • William J. Price


The use of accent lighting in retail stores has focused illumination on potatoes for greater consumer awareness. Unfortunately, this directed light on displayed potatoes may impact the rate or level of tuber greening. The objective of this study was to evaluate the influence of various retail accent light sources on greening and quality of illuminated tubers. Two separate experiments exposed ‘Russet Burbank’ potato tubers to fiber optic, ceramic metal halide, fluorescent, fluorescent with filter lighting (experiment 1) and fiber optic, halogen, and fluorescent lighting (experiment 2). In each experiment, tubers were exposed to a consistent light intensity (1390 lx in experiment 1 and 1300 lx in experiment 2) in addition to a dark control. Tubers were illuminated for 22 h per day at an ambient room temperature of 22 C. Six randomly selected tubers were evaluated for level of greening, chlorophyll concentration, and weight loss at day 0, 2, 4, 7, and 9. Total glycoalkaloid content was analyzed at days 0 and 9. In experiment 1, the fiber optic and fluorescent illuminated tubers showed significantly lower chlorophyll content compared to the ceramic metal halide light source. There was no significant difference in chlorophyll level or greening rating between the fluorescent light source and fluorescent with filter. In experiment 2, the fiber optic illuminated tubers had lower chlorophyll content and less visual greening compared to the halogen illuminated tubers. Total glycoalkaloids were not significantly impacted by light source. The use of fiber optic lighting or a combination of fiber optic lighting with standard fluorescent lighting would retard the progression of greening in the retail store yet potentially highlight the commodity for consumer eye-appeal.


Chlorophyll Lighting Fiber optic Halogen Fluorescent Ceramic metal halide Glycoalkaloid 


El uso de iluminación dirigida en tiendas de menudeo ha enfocado la iluminación de papas para mayor atención del consumidor. Desafortunadamente, la luz dirigida en papas en exhibición pudiera impactar el grado o nivel de enverdecimiento del tubérculo. El objetivo de este estudio fue evaluar la influencia de varias fuentes de luz dirigida al menudeo en el verdeo y calidad de los tubérculos iluminados. En dos experimentos separados se expuso a tubérculos de “Russet Burbank” a fibra óptica, haluro de metal cerámico, fluorescente, fluorescente con filtro de luz (experimento 1), y fibra óptica, halógeno, y luz fluorescente (experimento 2). En cada experimento, se expuso a los tubérculos a una intensidad consistente de luz (1390 lx en el experimento 1 y 1300 luz en el experimento 2) además de un testigo en la oscuridad. Se iluminó a los tubérculos por 22 horas al día a una temperatura ambiente de 22 °C. Se evaluaron seis tubérculos seleccionados al azar por nivel de verdeo, concentración de clorofila, y por pérdida de peso a los días 0, 2, 4, 7 y9. Se analizó el contenido total de glicoalcaloides a los días 0 y 9. En el experimento 1 los tubérculos iluminados con fibra óptica y fluorescente mostraron significativamente más bajo contenido de clorofila en comparación con los de fuente de luz con haluro de metal cerámico. No hubo diferencia significativa en la evaluación del nivel de clorofila o verdeo entre la fuente de luz fluorescente y de luz fluorescente con filtro. En el experimento 2, los tubérculos iluminados con fibra óptica tuvieron más bajo contenido de clorofila y menos verdeo visual en comparación con los de iluminación con halógeno. Los glicoalcaloides totales no se impactaron significativamente por la fuente de luz. El uso de iluminación con fibra óptica o de una combinación de luz de fibra óptica con luz fluorescente estándar retardará el progreso del verdeo en la tienda de menudeo y así resaltaría potencialmente el atractivo visual del producto al consumidor.



Thank you to L. Schroeder for evaluating the glycoalkaloid concentrations.


Funding for this research project was provided, in part, by the Idaho Agricultural Experiment Station and the Idaho Potato Commission.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Anstis, P.J.P., and D.H. Northcote. 1973. Development of chloroplasts from amyloplasts in potato tuber discs. New Phytology 72: 449–463.CrossRefGoogle Scholar
  2. Bamberg, J., R. Navarre Moehninsi, and J. Suriano. 2015. Variation for tuber greening in the diploid wild potato Solanum microdontum. American Journal of Potato Research 92: 435–443.CrossRefGoogle Scholar
  3. Bergers, W.W. 1980. A rapid quantitative assay for solanidine glycoalkaloids in potatoes and industrial potato protein. Potato Research 23: 105–110.CrossRefGoogle Scholar
  4. Buck, R.W., and R.V. Akeley. 1967. Effect of maturity, storage temperature, and storage time on greening of potato tubers. American Potato Journal 44: 56–58.CrossRefGoogle Scholar
  5. Edwards, E.J., and A.H. Cobb. 1997. Effect of temperature on glycoalkaloid and chlorophyll accumulation in potatoes (Solanum tuberosum L cv. King Edward) stored at low photon flux density, including preliminary modeling using an artificial neural network. Journal of Agricultural and Food Chemistry 45: 1032–1038.CrossRefGoogle Scholar
  6. Edwards, E.J., and A.H. Cobb. 1999. The effect of prior storage on the potential of potato tubers (Solanum tuberosum L) to accumulate glycoalkaloids and chlorophylls during light exposure, including artificial neural network modeling. Journal of the Science of Food and Agriculture 79: 1289–1297.CrossRefGoogle Scholar
  7. Edwards, E.J., R.E. Saint, and A.H. Cobb. 1998. Is there a link between greening and light-enhanced glycoalkaloid accumulation in potato (Solanum tuberosum L) tubers? Journal of the Science of Food and Agriculture 76: 327–333.CrossRefGoogle Scholar
  8. Griffiths, D.W., H. Bain, and M.F.B. Dale. 1998. Effect of storage temperature on potato (Solanum tubersoum L.) tuber glycoalkaloid content and subsequent accumulation of glycoalkaloids and chlorophyll in response to light exposure. Journal of Agricultural and Food Chemistry 46: 5262–5268.CrossRefGoogle Scholar
  9. Grunenfelder, L., L.K. Hiller, and N.R. Knowles. 2006a. Color indices for the assessment of chlorophyll development and greening of fresh market potatoes. Postharvest Biology and Technology 40: 73–81.CrossRefGoogle Scholar
  10. Grunenfelder, L., L.O. Knowles, L.K. Hiller, and N.R. Knowles. 2006b. Glycoalkaloid development during greening of fresh market potatoes (Solanum Tuberosum L.). Journal of Agricultural and Food Chemistry 54: 5847–5854.CrossRefPubMedGoogle Scholar
  11. Haase, N.U. (2010) Glycoalkaloid Concentration in Potato Tubers Related to Storage and Consumer Offering. Potato Research 53(4): 297–307Google Scholar
  12. Hardenburg, R.E. 1954. Comparison of polyethylene with various other 10-pound consumer bags for Sebago, Katahdin, and Green Mountain potatoes. American Potato Journal 31: 29–39.CrossRefGoogle Scholar
  13. Hardenburg, R.E. 1964. Greening of potatoes during marketing – A review. American Potato Journal 41: 215–220.CrossRefGoogle Scholar
  14. Jadhav, S.J., and D.K. Salunkhe. 1975. Formation and control of chlorophyll and glycoalkaloids in tubers of Solanum tuberosum L. and evaluation of glycoalkaloid toxicity. Advances in Food Research 21: 307–354.CrossRefPubMedGoogle Scholar
  15. Jakuczun, H., and E. Zimnoch-Guzowska. 2006. Inheritance of tuber greening under light exposure in diploid potatoes. American Journal of Potato Research 83: 211–221.CrossRefGoogle Scholar
  16. Jemison, J.M., P. Sexton, and M.E. Camire. 2008. Factors influencing consumer preference of fresh potato varieties in Maine. American Journal of Potato Research 85: 140–149.CrossRefGoogle Scholar
  17. Jeppsen, R.B., M.T. Wu, and D.K. Salunkhe. 1974. Some observations on the occurrence of chlorophyll and solanine in potato tubers and their control by N6-benzyladenine, ethephon and filtered lights. Journal of Food Science 39: 1059–1061.CrossRefGoogle Scholar
  18. Liljemark, A., and E. Widoff. 1960. Greening and solanine development of white potato in fluorescent light. American Potato Journal 37: 379–389.CrossRefGoogle Scholar
  19. Machado, R.M.D., M.C.F. Toledo, and L.C. Garcia. 2007. Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control 18: 503–508.CrossRefGoogle Scholar
  20. Mekapogu, M., H. Sohn, S. Kim, Y. Lee, H. Park, Y. Jin, S. Hong, J. Suh, K. Kweon, J. Jeong, O. Kwon, and Y. Kim. 2016. Effect of light quality on the expression of glycoalkaloid biosynthetic genes contributing to steroidal glycoalkaloid accumulation in potato. American Journal of Potato Research 93: 264–277.Google Scholar
  21. Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N, N- dimethylformamide. Plant Physiology 69: 1376–1381.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Patil, B.C., D.K. Salunkhe, and B. Singh. 1971. Metabolism of solanine and chlorophyll in potato tubers as affected by light and specific chemicals. Journal of Food Science 36: 474–476.CrossRefGoogle Scholar
  23. Percival, G.C. 1999a. The influence of light upon glycoalkaloid and chlorophyll accumulation in potato tubers (Solanum tuberosum L.). Plant Science 145: 99–107.CrossRefGoogle Scholar
  24. Percival, G.C. 1999b. Light-induced glycoalkaloid accumulation of potato tubers (Solanum tuberosum L). Journal of the Science of Food and Agriculture 79: 1305–1310.CrossRefGoogle Scholar
  25. Petermann, J.B., and S.C. Morris. 1985. The spectral responses of chlorophyll and glycoalkaloid synthesis in potato tubers (Solanum Tuberosum). Plant Science 39: 105–110.CrossRefGoogle Scholar
  26. Poapst, P.A., I. Price, and F.R. Forsyth. 1978. Prevention of post storage greening in table stock potato tubers by application of surfactants and adjuvants. Journal of Food Science 43: 900–903.CrossRefGoogle Scholar
  27. Reeves, A.F. 1988. Varietal differences in potato tuber greening. American Potato Journal 65: 651–658.CrossRefGoogle Scholar
  28. Rosenfeld, H.J., H.A. Sundell, P. Lea, and M. Ringstad. 1995. Influence of packaging materials and temperature on the glycoalkaloid content of potato tubers. Food Research International 28: 481–484.CrossRefGoogle Scholar
  29. Salunkhe, D.K., M.T. Wu, and S.J. Jadhav. 1972. Effects of light and temperature on the formation of solanine in potato slices. Journal of Food Science 37: 969–970.CrossRefGoogle Scholar
  30. Sinden, S.L. 1971. Control of potato greening with household detergents. American Potato Journal 48: 53–56.CrossRefGoogle Scholar
  31. Stark, J.C. and D.T. Westermann. 2003. Nutrient management. In Potato Production Systems, ed. J.C. Stark and S.L. Love, 115-135. Moscow: University of Idaho Extension.Google Scholar
  32. Wu, M.T., and D.K. Salunke. 1978. Responses of lecithin and hydroxylated lecithin coated potato tubers to light. Journal of Agricultural and Food Chemistry 26: 513–514.CrossRefGoogle Scholar
  33. Yamaguchi, M., D.L. Hughes, and F.D. Howard. 1960. Effect of color and intensity of fluorescent lights and application of chemicals and waxes on chlorophyll development of white rose potatoes. American Potato Journal 37: 229–236.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  • Nora L. Olsen
    • 1
  • Tina Brandt
    • 1
  • William J. Price
    • 2
  1. 1.Department of Plant, Soils and Entomological Sciences, Kimberly Research and Extension CenterUniversity of IdahoKimberlyUSA
  2. 2.Statistical ProgramsUniversity of IdahoMoscowUSA

Personalised recommendations