American Journal of Potato Research

, Volume 94, Issue 5, pp 465–480 | Cite as

Consumer Demand for Low-Acrylamide-Forming Potato Products: Evidence from Lab Auctions

  • Jonathan McFadden
  • Wallace HuffmanEmail author


A probable human carcinogen—acrylamide—was discovered about a decade ago to form naturally in potato products cooked at high temperatures. Using incentive compatible lab auctions and adult consumers from three distant U.S. locations, we test food labeling and information effects on willingness-to-pay (WTP) for conventional and genetically engineered potatoes, fries, and chips to reduce acrylamide levels. These new potato products are the first biotech products to have enhanced food safety for a popular food in the American and European diets. Relative to an environmental group’s perspective, scientific and industry information significantly increase WTP for biotech relative to conventional potato products. In addition, we find significant location-specific fixed effects of information treatments. Scientific and industry information can be used to nudge consumers towards improved decision making and healthy diets.


Potato products Information and labeling effects Acrylamide Biotechnology Food safety 


Un probable carcinógeno humano –acrilamida— se descubrió hace como una década; se forma naturalmente en productos de papa cocinados a alta temperatura. Mediante el uso de subastas de laboratorio compatibles con incentivos y consumidores adultos de tres localidades distantes en los EUA, probamos etiquetado de alimentos y efectos de información sobre la disponibilidad de pagar (WTP) papas convencionales y las obtenidas por ingeniería genética, a la francesa y en hojuelas, para reducir los niveles de acrilamida. Estos nuevos productos de papa son los primeros biotecnológicos que han aumentado la seguridad alimentaria para un alimento popular en las dietas americana y europea. En relación a la perspectiva de grupos ambientalistas, la información científica y de la industria aumenta significativamente la WTP para los productos de la papa biotecnológica en relación a los de la convencional. Además, encontramos efectos fijos por localidad significativos de tratamientos a la información. La información científica y de la industria puede usarse para empujar a los consumidores hacia un mejoramiento en la toma de decisiones y dietas sanas.



We acknowledge funding and assistance from the USDA through the University of Wisconsin, the J.R. Simplot Company, and the Iowa Agriculture and Home Economics Experiment Station. The experiments were conducted while McFadden was at Iowa State University and were approved by the ISU Institutional Review Board (IRB) in ISU IRB #14-115.


  1. Antoniou, M., C. Robinson, and J. Fagan. 2012. GMO myths and truths. London: Earth Open Source.Google Scholar
  2. Bethke, P.C., and A.J. Bussan. 2013. Acrylamide in processed potato products. American Journal of Potato Research 90: 403–424.CrossRefGoogle Scholar
  3. Colson, G.J., W.E. Huffman, and M.C. Rousu. 2011. Improving the nutrient content of food through genetic modification: Evidence from experimental auctions on consumer acceptance. Journal of Agricultural and Resource Economics 36: 343–364.Google Scholar
  4. Garland, T., and M. Patterson. 1967. Six cases of acrylamide poisoning. British Medical Journal 4: 134–138.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hayes, D.J., J.A. Fox, and J.F. Shogren. 2002. Experts and activists: How information affects the demand for food irradiation. Food Policy 27: 185–193.CrossRefGoogle Scholar
  6. Hayes, D.J., J.F. Shogren, S.S. Youll, and J.B. Kliebenstein. 1995. Valuing food safety in experimental auction markets. American Journal of Agricultural Economics 77: 40–53.CrossRefGoogle Scholar
  7. Hoffman, E., D.J. Menkhaus, D. Chakravarti, R.A. Field, and G.D. Whipple. 1992. Using laboratory experimental auctions in marketing research: A case study of new packaging for fresh beef. Marketing Science 12: 318–338.CrossRefGoogle Scholar
  8. Huffman, W.E., M.C. Rousu, J.F. Shogren, and A. Tegene. 2007. The effects of prior beliefs and learning on consumers’ acceptance of genetically modified foods. Journal of Economic Behavior and Organization 63: 193–206.CrossRefGoogle Scholar
  9. Huffman, W.E., J.F. Shogren, M.C. Rousu, and A. Tegene. 2003. Consumer willingness to pay for genetically modified food labels in a market with diverse information: Evidence from experimental auctions. Journal of Agricultural and Resource Economics 28: 481–502.Google Scholar
  10. Institute of Medicine. 2015. Review of WIC food packages: An evaluation of white potatoes in the cash value voucher: Letter report. Washington, DC: The National Academies Press.Google Scholar
  11. JECFA. 2011. Safety evaluation of certain contaminants in food. Rome: Technical Report Series.Google Scholar
  12. Lacy, K., and W.E. Huffman. 2016. Consumer demand for potato products and willingness-to-pay for low-acrylamide, sulfite-free fresh potatoes and dices: Evidence from lab auctions. Journal of Agricultural and Resource Economics 4: 116–137.Google Scholar
  13. Lineback, D.R., J.R. Coughlin, and R.H. Stadler. 2012. Acrylamide in food: A review of the science and future considerations. Annual Review of Food Science and Technology 3: 15–35.CrossRefPubMedGoogle Scholar
  14. List, J.A. 2009. An introduction to field experiments in economics. Journal of Economic Behavior and Organization 70: 439–442.CrossRefGoogle Scholar
  15. Lusk, J.L., and J.F. Shogren. 2007. Experimental auctions: Methods and applications in economic and marketing research. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Maddala, G. 1983. Limited dependent and qualitative variables in econometrics. In Econometric Society Monographs in Quantitative Economics. Vol. 3. Cambridge: Cambridge University Press.Google Scholar
  17. Menkhaus, D.J., G.W. Borden, G.D. Whipple, E. Hoffman, and R.A. Field. 1992. An empirical application of experimental economics in marketing research. Journal of Agricultural and Resource Economics 17: 44–55.Google Scholar
  18. Mottram, D.S., B.L. Wedzicha, and A.T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448–449.CrossRefPubMedGoogle Scholar
  19. Mucci, L.A., and H.O. Adami. 2009. The plight of the potato: Is dietary acrylamide a risk factor for human cancer? Journal of the National Cancer Institute 101: 618–621.CrossRefPubMedGoogle Scholar
  20. Naruszewicz, M., D. Zapolska-Downar, A. Kosmider, G. Nowicka, M. Kozlowska-Wojciechowska, A. Vikstrom, and M. Tornqvist. 2009. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: A pilot study. American Journal of Clinical Nutrition 89: 773–777.CrossRefPubMedGoogle Scholar
  21. Nixon, B.J., S.J. Stanger, B. Nixon, and S.D. Roman. 2012. Chronic exposure to acrylamide induces DNA damage in male germ cells of mice. Toxicological Sciences 129: 135–145.CrossRefPubMedGoogle Scholar
  22. O’Connell, J. 2014. USDA deregulates biotech potato. Capital Press website:
  23. OAG. 2008. Atty. gen. brown settles potato chip lawsuit with Heinz, Frito-Lay & Kettle Foods website:
  24. OEHHA. 2014. Proposition 65 website:
  25. Public Law 114–216. 2016. An act to reauthorize and amend the National Sea Grant College Program Act, and for other purposes. National Bioengineered Food Disclosure Standard. 130 Stat. 834.Google Scholar
  26. Rasmussen, J., K. Bradley, and H. Baker. 2013. Innate varieties: 1.0 and beyond. Working paper. J.R. Simplot company.Google Scholar
  27. Rousu, M.C., R.H. Beach, and J.R. Corrigan. 2008. The effects of selling complements and substitutes on consumer willingness to pay: Evidence from a laboratory experiment. Canadian Journal of Agricultural Economics 56: 179–194.CrossRefGoogle Scholar
  28. Rousu, M.C., W.E. Huffman, J.F. Shogren, and A. Tegene. 2007. Effects and value of verifiable information in a controversial market: Evidence from lab auctions of genetically modified food. Economic Inquiry 45: 409–432.CrossRefGoogle Scholar
  29. Schmitz, J.D., D.J. Menkhaus, G.D. Whipple, E. Hoffman, and R.A. Field. 1993. Impact of changing consumer preferences on willingness-to-pay for beef steaks in alternative retail packaging. Journal of Food Distribution Research 24: 23–35.Google Scholar
  30. Shiraishi, Y. 1978. Chromosome aberrations induced by monomeric acrylamide in bone marrow and germ cells of mice. Mutation Research 57: 313–324.PubMedGoogle Scholar
  31. Shogren, J., M. Margolis, C. Koo, and J.A. List. 2001. A random nth-price auction. Journal of Economic Behavior and Organization 46: 409–421.CrossRefGoogle Scholar
  32. Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson, and M. Tornqvist. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50: 4998–5006.CrossRefPubMedGoogle Scholar
  33. Tran, N.L., L.M. Barraj, and S. Collinge. 2016. Reductions in dietary acrylamide exposure – Impact of potatoes with low acrylamide exposure. Risk Analysis (forthcoming).Google Scholar
  34. USFDA. 2016. Guidance for industry: Acrylamide in food. Washington, DC: U.S. Government Printing Office.Google Scholar
  35. Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57: 348–368.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  1. 1.Economic Research Service, U.S.Department of AgricultureWashingtonUSA
  2. 2.Department of EconomicsIowa State UniversityAmesUSA

Personalised recommendations