American Journal of Potato Research

, Volume 94, Issue 4, pp 306–313 | Cite as

Genetic Diversity and Redundancy Among Potato Accessions in the Montenegrin Collection as Revealed by Microsatellite Markers

  • Marko Maras
  • Aleš Sedlar
  • Alex Reid
  • Vladan Božović
  • Zoran Jovović
  • Vladimir Meglič
  • Peter Dolničar
Article
  • 163 Downloads

Abstract

Potato was introduced in Montenegro in the middle of the eighteenth century. Since then it has become the most important crop in plant production. During the period between 2008 and 2010 a total of 52 potato accessions was collected across Montenegro and stored in a national gene bank. In the study reported here 23 accessions from the collection were examined using microsatellite (also known as simple sequence repeats or SSRs) molecular markers with the aim to explore genetic diversity and redundancy within the germplasm. The accessions were selected on the basis of preliminary characterization of all 52 accessions for 11 lightsprout traits. Molecular characterization of 23 accessions by 12 SSR markers was carried out at SASA (Science and Advice for Scottish Agriculture) that manages a database of more than 3000 genetic profiles of potato from Europe and abroad. Comparison of SSR genetic profiles of Montenegrin collection against the existing SASA database allowed us to test the authenticity of the Montenegrin accessions. Out of the 23 accessions examined, 13 showed distinct genetic profiles of which seven showed perfect matching with known cultivars, two profiles showed strong similarity to another two cultivars, and four profiles were found unique with regards to the SASA database. Application of microsatellite markers in this study provided valuable information on the extent of genetic diversity residing within Montenegrin potato germplasm; it gave clear indications of the scale of redundancy within the collection; and helped clarify the identity of the accessions. Four accessions within the collection might incorporate unique variation and will be subjected to further agronomical examinations to assess their potential for breeding purposes.

Keywords

Gene bank Germplasm Genetic relationships Cultivars Breeding Duplicates 

Resumen

La papa se introdujo a Montenegro a mediados del siglo 18. Desde entonces, se ha convertido en el cultivo más importante en la producción vegetal. Durante el período comprendido entre 2008 y 2010, se colectó un total de 52 accesiones a lo largo de Montenegro y se almacenó en un banco nacional de germoplasma. En nuestro estudio aquí reportado, se examinaron 23 accesiones de la colección usando los marcadores moleculares microsatélites (también conocidos como repeticiones de secuencias simples o SSRs), con el propósito de explorar la diversidad genética y redundancia dentro del germoplasma. Se seleccionaron las accesiones con base en caracterización preliminar de las 52 colectas para 11 características sobresalientes. La caracterización molecular de las 23 accesiones con 12 marcadores SSR se desarrolló en SASA (Science and Advice for Scottish Agriculture), que maneja una base de datos de más de 3000 perfiles genéticos de papa de Europa y otros lugares. La comparación de los perfiles genéticos SSR de la colección Montenegrina contra la base de datos existente de SASA nos permitió probar la autenticidad de las accesiones de Montenegro. De las 23 colectas examinadas, 13 mostraron perfiles genéticos distintos, de los cuales siete mostraron coincidencia perfecta con variedades conocidas, dos perfiles mostraron fuerte similitud a otras dos variedades, y cuatro perfiles fueron únicos en relación a la base de datos de SASA. La aplicación de los marcadores microsatélites en este estudio contribuyó con información valiosa en cuanto a la diversidad genética residente en el germoplasma Montenegrino de papa; dio indicaciones claras de la escala de redundancia dentro de la colección, y ayudó a clarificar la identidad de las accesiones. Cuatro de éstas pudieran incorporar variación única y será sujeta a análisis agronómicos posteriores para evaluar su potencial con propósitos de mejoramiento.

Notes

Acknowledgements

The authors wish to thank Matej Knapič for preparing a map of potato collection sites in Montenegro. This work was financially supported by FP7 Project CropSustaIn, grant agreement FP7-REGPOT-CT2012-316205, and by grant P4-0072 from the Slovenian Research Agency.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12230_2017_9566_MOESM1_ESM.doc (78 kb)
ESM 1 (DOC 78 kb)

References

  1. Birch, P.R.J., G. Bryan, B. Fenton, E. Gilroy, I. Hein, J.T. Jones, A. Prashar, M.A. Taylor, L. Torrance, and I.K. Toth. 2012. Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Security 4: 477–508.CrossRefGoogle Scholar
  2. Carputo, D., D. Alioto, R. Aversano, R. Garramone, V. Miraglia, C. Villano, and L. Frusciante. 2013. Genetic diversity among potato species as revealed by phenotypic resistances and SSR markers. Plant Genetic Resources 11: 131–139.CrossRefGoogle Scholar
  3. Chavarriaga-Aguirre, P., M.M. Maya, M.V. Bonierbale, S. Kresolich, M.A. Fregene, J. Toehne, and G. Kochert. 1998. Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theoretical and Applied Genetics 97: 493–501.CrossRefGoogle Scholar
  4. Cooke, R.J. 1999. New approaches to potato variety identification. Potato Research 42: 529–539.CrossRefGoogle Scholar
  5. de Galarreta, J.I.R., L. Barandalla, D.J. Rios, R. Lopez, and E. Ritter. 2011. Genetic relationships among local potato cultivars from Spain using SSR markers. Genetic Resources and Crop Evolution 58: 383–395.CrossRefGoogle Scholar
  6. Diederichsen, A. 2009. Duplication assessments in Nordic Avena sativa accessions at the Canadian national genebank. Genetic Resources and Crop Evolution 56: 587–597.CrossRefGoogle Scholar
  7. Đorđević, V. 1961. Posebno ratarstvo. Beograd: Naučna knjiga.Google Scholar
  8. Gavrilenko, T., O. Antonova, A. Ovchinnikova, L. Novikova, E. Krylova, N. Mironenko, G. Pendinen, A. Islamshina, N. Shvachko, S. Kiru, L. Kostina, O. Afanasenko, and D.M. Spooner. 2010. A microsatellite and morphological assessment of the Russian national cultivated potato collection. Genetic Resources and Crop Evolution 57: 1151–1164.CrossRefGoogle Scholar
  9. Hawkes, J.G., and J. Francisco-Ortega. 1992. The potato in Spain during the late sixteenth century. Economic Botany 46: 86–97.CrossRefGoogle Scholar
  10. Jaccard, P. 1908. Nouvelles researches sur la distribution florale. Bulletin Societé Vaudoise des Sciences Naturelle 44: 223–270.Google Scholar
  11. Jovović, Z., D. Stešević, V. Meglič, and P. Dolničar. 2013. Old potato varieties in Montenegro. Biotechnical faculty Podgorica: University of Montenegro.Google Scholar
  12. Kapičić, H. 1958. Kultura krompira u Crnoj Gori. In Istorijski zapisi, br, 1–2. Montenegro: Cetinje.Google Scholar
  13. Liao, H., and H. Guo. 2014. Using SSR to evaluate the genetic diversity of potato cultivars from Yunnan province (SW China). Acta Biologica Cracoviensia Series Botanica 56: 16–27.Google Scholar
  14. Lung’aho, C., G.N. Chemining’wa, Y.B. Fu, S.I. Shibairo, M.J. Hutchinson, and H.G. Paniagua. 2011. Genetic diversity of Kenyan potato germplasm revealed by simple sequence repeat markers. American Journal of Potato Research 88: 424–434.CrossRefGoogle Scholar
  15. Mitchell, S.E., S. Kresovich, C.A. Jester, C.J. Hernandez, and A.K. Szewe-McFadden. 1997. Application of multiplex PCR and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Science 37: 617–624.CrossRefGoogle Scholar
  16. Moisan-Thiery, M., S. Marhadour, M.C. Kerlan, N. Dessenne, M. Perramant, T. Gokelaere, and Y. Le Hingrat. 2005. Potato cultivars identification using simple sequence repeats markers (SSR). Potato Research 48: 191–200.CrossRefGoogle Scholar
  17. Nei, M. 1973. Analyses of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 70: 3321–3323.CrossRefGoogle Scholar
  18. Queller, D.C., J.E. Strassmann, and C.E. Hughes. 1993. Microsatellites and kinship. Trends in Ecology & Evolution 8: 285–288.CrossRefGoogle Scholar
  19. Rafalski, J.A., and S.V. Tingey. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends in Genetics 9: 275–279.CrossRefPubMedGoogle Scholar
  20. Reid, A., L. Hof, D. Esselink, and B. Vosman. 2009. Potato cultivar genome analysis. In Methods in molecular biology, plant pathology, ed. R. Burns, vol. 508, 295–308. New York: Springer.Google Scholar
  21. Reid, A., L. Hof, G. Felix, B. Rücker, S. Tams, E. Milczynska, D. Esselink, G. Uenk, B. Vosman, and A. Weitz. 2011. Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica 182: 239–249.CrossRefGoogle Scholar
  22. Rohlf, F.J. 1998. NTSYS-pc. Numerical taxonomy and multivariate analysis system. New York: Applied Biostatistics.Google Scholar
  23. Saghai Maroof, M.A., R.M. Biyashev, G.P. Yang, Q. Zhang, and R.W. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. Proceedings of the National Academy of Sciences USA 91: 5466–5470.CrossRefGoogle Scholar
  24. Salaman, R.N. 1949. The history and social influence of the potato. Cambridge: Cambridge University Press.Google Scholar
  25. Spanoghe, M., T. Marique, J. Rivière, D. Lanterbecq, and M. Gadenne. 2015. Investigation and development of potato parentage analysis methods using multiplexed SSR fingerprinting. Potato Research 58: 43–65.CrossRefGoogle Scholar
  26. van Treuren, R., A. Magda, R. Hoekstra, and T.J.L. van Hintum. 2004. Genetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection. Genetic Resources and Crop Evolution 51: 277–290.CrossRefGoogle Scholar
  27. Weber, J.L., and P.E. May. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics 44: 388–396.PubMedPubMedCentralGoogle Scholar
  28. Ziegle, J.S., Y. Su, K.P. Corcoran, L. Nie, P.E. Mayrand, L.B. Hoff, L.J. McBride, M.N. Kronoick, and S.R. Diehl. 1992. Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14: 1026–1031.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  1. 1.Agricultural Institute of SloveniaLjubljanaSlovenia
  2. 2.Science and Advice for Scottish AgricultureEdinburghUK
  3. 3.Faculty for Food Technology, Food Safety and EcologyUniversity Donja GoricaPodgoricaMontenegro
  4. 4.Biotechnical Faculty PodgoricaUniversity of MontenegroPodgoricaMontenegro

Personalised recommendations