American Journal of Potato Research

, Volume 94, Issue 2, pp 153–159 | Cite as

Determination of Glycoalkaloids in Potatoes and Potato Products by Microwave Assisted Extraction

  • Narasimharao Kondamudi
  • Jacob K. Smith
  • Owen M. McDougal
Article
  • 364 Downloads

Abstract

Potato glycoalkaloids can reach levels that are harmful to human health. A rapid and reliable microwave assisted extraction method for quantitative analysis of α-solanine and α-chaconine content in raw potato and potato based products is presented. A chemical microwave was used to determine optimal temperature and pressure conditions for the extraction of α-solanine and α-chaconine from Idaho grown tubers and six commercially available mashed potato products. Recovery efficiency of glycoalkaloids was 37% greater by microwave assisted extraction (19.92 mg/kg glycoalkaloid) as compared to conventional solid/liquid methods (12.51 mg/kg glycoalkaloid). Optimal extraction of glycoalkaloids from potato samples dissolved in methanol was achieved using a microwave reactor set to 90 °C for ten minutes. The interior of Idaho grown tubers was determined to contain lower levels of glycoalkaloids (19.92 mg/kg dry weight; 6.5 ± 1.78 mg α-solanine and 13.40 ± 1.65 mg α-chaconine), as compared to commercial potato products (33.86–81.59 mg/kg).

Keywords

Glycoalkaloids Microwave assisted extraction Idaho grown potato Alpha-solanine Alpha-chaconine 

Resumen

Los glicoalcaloides de la papa pueden alcanzar niveles dañinos a la salud humana. Aquí se presenta un método rápido y confiable de extracción asistida por microondas para análisis cuantitativo del contenido de α-solanina y α-chaconina en papa cruda y en productos a base de papa. Se usó una microonda química para determinar las condiciones óptimas de temperatura y presión para la extracción de α-solanina y α-chaconina, de tubérculos cultivados en Idaho y de seis productos comerciales disponibles de puré de papa. La eficiencia en la recuperación de los glicoalcaloides fue 37% mayor mediante la extracción asistida por microondas (19.92 mg de alcaloide/kg) en comparación a métodos convencionales de sólido/líquido (12.51 mg alcaloide/kg). La extracción óptima de glicoalcaloides de muestras de papa disueltas en metanol se logró usando un reactor de microondas a 90 °C por diez minutos. Se determinó que el interior de los tubérculos cultivados en Idaho contenían niveles más bajos de glicoalcaloides (19.92 mg/kg de peso seco; 6.5 ± 1.78 mg α-solanina y 13.40 ± 1.65 mg α-chaconina), al compararse con productos comerciales (33.86–81.59 mg/kg).

Notes

Acknowledgements

The authors wish to thank Dr. Jeffri Bohlscheid, Senior Principal Scientist at J. R. Simplot Company for consultation and material support for this project. The chemical microwave was purchased using funds provided by the state of Idaho Technology Incentive Grant program and the separation and analysis of products was conducted using a UPLC-DAD-MS purchased with funds obtained from the Idaho Department of Commerce Global Entrepreneurial Mission grant program. The financial support of Boise State University College of Arts and Sciences and Office of Sponsored Programs made this work possible.

Compliance with Ethical Standards

Competing Interests

The authors declare no competing financial interests.

Supplementary material

12230_2016_9558_MOESM1_ESM.docx (224 kb)
ESM 1(DOCX 223 kb)

References

  1. Aziz, A., M.A. Randhawa, M.S. Butt, A. Asghar, M. Yasin, and T. Shibamoto. 2012. Glycoalkaloids (alpha-chaconine and alpha-solanine) contents of selected pakistani potato cultivars and their dietary intake assessment. Journal of Food Science 77(3): T58–T61.CrossRefPubMedGoogle Scholar
  2. Bekdeser, B., N. Durusoy, M. Ozyurek, K. Guclu, and R. Apak. 2014. Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity. Journal of Agricultural and Food Chemistry 62(46): 11109–11115.CrossRefPubMedGoogle Scholar
  3. Cardoso-Ugarte, G.A., G.P. Juarez-Becerra, M.E. Sosa-Morales, and A. Lopez-Malo. 2013. Microwave-assisted extraction of essential oils from herbs. Journal of Microwave Power and Electromagnetic Energy 47(1): 63–72.CrossRefPubMedGoogle Scholar
  4. Distl, M., M. Sibum, and M. Wink. 2009. Combination of on-line solid-phase extraction with LC-MS for the determination of potentially hazardous glycoalkaloids in potato products. Potato Research 52(1): 39–56.CrossRefGoogle Scholar
  5. Driedger, D.R., and P. Sporns. 2001. Immunoaffinity sample purification and MALDI-TOF MS analysis of alpha-solanine and alpha-chaconine in serum. Journal of Agricultural and Food Chemistry 49(2): 543–548.CrossRefPubMedGoogle Scholar
  6. Friedman, M. 2015. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. Journal of Agricultural and Food Chemistry 63(13): 3323–3337.CrossRefPubMedGoogle Scholar
  7. Friedman, M., and L. Dao. 1992. Distribution of glycoalkaloids in potato plants and commercial potato products. Journal of Agricultural and Food Chemistry 40(3): 419–423.CrossRefGoogle Scholar
  8. Friedman, M., and G.M. McDonald. 1997. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Critical Reviews in Plant Science 16(1): 55–132.CrossRefGoogle Scholar
  9. Glorio-Paulet, P., and R.A. Durst. 2000. Determination of potato glycoalkaloids using a liposome immunomigration, liquid-phase competition immunoassay. Journal of Agricultural and Food Chemistry 48(5): 1678–1683.CrossRefPubMedGoogle Scholar
  10. Gosselin, B., and N.I. Mondy. 1989. Effect of packaging materials on the chemical-composition of potatoes. Journal of Food Science 54(3): 629–631.CrossRefGoogle Scholar
  11. Gregory, P., S.L. Sinden, S.F. Osman, W.M. Tingey, and D.A. Chessin. 1981. Glycoalkaloids of wild, tuber-bearing Solanum species. Journal of Agricultural and Food Chemistry 29(6): 1212–1215.CrossRefGoogle Scholar
  12. Hossain, M.B., A. Rawson, I. Aguilo-Aguayo, N.P. Brunton, and D.K. Rai. 2015. Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction. Molecules 20(5): 8560–8573.CrossRefPubMedGoogle Scholar
  13. Huie, C.W. 2002. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry 373(1–2): 23–30.CrossRefPubMedGoogle Scholar
  14. Jensen, P.H., B.J. Harder, B.W. Strobel, B. Svensmark, and H.C.B. Hansen. 2007. Extraction and determination of the potato glycoalkaloid alpha-solanine in soil. International Journal of Environmental Analytical Chemistry 87(12): 813–824.CrossRefGoogle Scholar
  15. Liu, Y., L. Yang, Y. Zu, C. Zhao, L. Zhang, Y. Zhang, Z. Zhang, and W. Wang. 2012. Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi. Food Chemistry 135(4): 2514–2521.CrossRefPubMedGoogle Scholar
  16. Luthria, D.L. 2012. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor. Journal of Functional Foods 4(4): 842–850.CrossRefGoogle Scholar
  17. Majeed, A., Z. Chaudhry, and Z. Muhammad. 2014. Changes in foliar glycoalkaloids levels of potato (Solanum tuberosum) triggered by late blight disease severity. International Journal of Agriculture and Biology 16(3): 609–613.Google Scholar
  18. Maldonado, A.F.S., E. Mudge, M.G. Ganzle, and A. Schieber. 2014. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Research International 65: 27–34.CrossRefGoogle Scholar
  19. Man, A.K., and R. Shahidan. 2007. Microwave-assisted chemical reactions. Journal of Macromolecular Science, Part A 44(4–6): 651–657.CrossRefGoogle Scholar
  20. Mondy, N.I., and C.B. Munshi. 1990. Effect of nitrogen-fertilization on glycoalkaloid and nitrate content of potatoes. Journal of Agricultural and Food Chemistry 38(2): 565–567.CrossRefGoogle Scholar
  21. Nikolic, N.C., M.Z. Stankovic, and D.Z. Markovic. 2005. Liquid-liquid systems for acid hydrolysis of glycoalkaloids from Solanum tuberosum L. tuber sprouts and solanidine extraction. Medical Science Monitor 11(7): BR200–BR205.PubMedGoogle Scholar
  22. Passam, H.C., and I.C. Karapanos. 2008. Eggplants, peppers and tomatoes: factors affecting the quality and storage life of fresh and fresh-cut (minimally processed) produce. The European Journal of Plant Science and Biotechnology 2(1): 156–170.Google Scholar
  23. Shanker, K., S. Gupta, P. Srivastava, S.K. Srivastava, S.C. Singh, and M.M. Gupta. 2011. Simultaneous determination of three steroidal glycoalkaloids in Solanum xanthocarpum by high performance thin layer chromatography. Journal of Pharmaceutical and Biomedical Analysis 54(3): 497–502.CrossRefPubMedGoogle Scholar
  24. Smith, K.A. 2013. Horrific tales of potatoes that caused mass sickness and even death. http://www.smithsonianmag.com/arts-culture/horrific-tales-of-potatoes-that-caused-mass-sickness-and-even-death-3162870/?no-ist. Accessed 5 March 2016.
  25. Sotelo, A., and B. Serrano. 2000. High-performance liquid chromatographic determination of the glycoalkaloids alpha-solanine and alpha-chaconine in 12 commercial varieties of Mexican potato. Journal of Agricultural and Food Chemistry 48(6): 2472–2475.CrossRefPubMedGoogle Scholar
  26. Talebpour, Z., A. Ghassempour, M. Abbaci, and H.Y. Aboul-Enein. 2009. Optimization of microwave-assisted extraction for the determination of glycyrrhizin in menthazin herbal drug by experimental design methodology. Chromatographia 70(1–2): 191–197.CrossRefGoogle Scholar
  27. Wang, S.L., N.R. Thompson, and C.L. Bedford. 1972. Determination of glycoalkaloids in potatoes (S. tuberosum) with a bisolvent extraction method. American Journal of Potato Research 49(8): 302–308.CrossRefGoogle Scholar
  28. Weissenberg, M., A. Levy, J.A. Svoboda, and I. Ishaaya. 1998. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 47(2): 203–209.CrossRefPubMedGoogle Scholar
  29. Widmann, N., M. Goian, I. Ianculov, D. Dumbrava, and C. Moldovan. 2008. Determination of the glycoalkaloids content from potato tubercules (Solanum tuberosum). Lucrări stiintifice Zootehnie si Biotehnologii 41(1): 807–813.Google Scholar
  30. Zitnak, A., and G.R. Johnston. 1970. Glycoalkaloid content of B5141-6 potatoes. American Journal of Potato Research 47(7): 256–260.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2016

Authors and Affiliations

  • Narasimharao Kondamudi
    • 1
  • Jacob K. Smith
    • 1
  • Owen M. McDougal
    • 1
  1. 1.Department of Chemistry & BiochemistryBoise State UniversityBoiseUSA

Personalised recommendations