American Journal of Potato Research

, Volume 93, Issue 4, pp 303–320 | Cite as

Sequence-Specific Nucleases for Genetic Improvement of Potato

INVITED REVIEW

Abstract

Genome editing using sequence-specific nucleases (SSNs) is rapidly becoming a standard tool for genetic engineering in crop species. The implementation of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) for inducing double-strand breaks enables targeting of virtually any sequence for genetic modification. Targeted mutagenesis via nonhomologous end-joining (NHEJ) and gene targeting via homologous recombination (HR) have been demonstrated in a number of plant species but reports have been limited in vegetatively propagated crops, such as potato (Solanum tuberosum Group Tuberosum L.). This review provides a historical overview of genetic engineering in agriculture, applications of SSN technologies for genome editing in plant species, and prospects of using SSNs for genetic improvement of potato.

Keywords

Genome editing TALEN CRISPR/Cas Targeted mutagenesis Gene targeting Homologous recombination 

Resumen

La edición del genoma utilizando nucleasas de secuencias específicas (SSNs) se está volviendo rápidamente una herramienta común para ingeniería genética en especies de cultivos. La implementación de nucleasas de dedos de zinc (ZFNs), nucleasas de efecto de activador de transcripción (TALENs) y CRISPR/Cas (agrupamientos de repeticiones cortas palindromicas regularmente interespaciadas (CRISPR)/sistemas asociados CRISPR (Cas)) para la inducción de rompimientos de doble cadena, permiten identificar objetivos de virtualmente cualquier secuencia para modificación genética. Se ha demostrado en un número de especies de plantas mutagénesis como objetivo vía unión de extremo no homóloga (NHEJ) y gene-objetivo vía recombinación homóloga (HR), pero los reportes son limitados a cultivos propagados vegetativamente, como la papa (Solanum tuberosum Grupo Tuberosum). Esta revisión proporciona una vista general histórica de ingeniería genética en agricultura, aplicaciones de tecnologías SSN para la edición de genomas en especies vegetales, y las perspectivas del uso SSNs para el mejoramiento genético de la papa.

References

  1. Ainley, W.M., L. Sastry-Dent, M.E. Welter, M.G. Murray, B. Zeitler, R. Amora, D.R. Corbin, et al. 2013. Trait stacking via targeted genome editing. Plant Biotechnology Journal 11: 1126–1134.PubMedCrossRefGoogle Scholar
  2. Ali, Z., A. Abul-faraj, L. Li, N. Ghosh, M. Piatek, A. Mahjoub, M. Aouida, et al. 2015. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant 8: 1288–1291.PubMedCrossRefGoogle Scholar
  3. Alonso, J.M., A.N. Stepanova, T.J. Leisse, C.J. Kim, H. Chen, P. Shinn, D.K. Stevenson, et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.PubMedCrossRefGoogle Scholar
  4. Anders, C., O. Niewoehner, A. Duerst, and M. Jinek. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–573.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andersen, M.M., X. Landes, W. Xiang, A. Anyshchenko, J. Falhof, J.T. Østerberg, L.I. Olsen, et al. 2015. Feasibility of new breeding techniques for organic farming. Trends in Plant Science 20: 426–434.PubMedCrossRefGoogle Scholar
  6. Antunes, M.S., J.J. Smith, D. Jantz, and J.I. Medford. 2012. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnology 12: 1–12.CrossRefGoogle Scholar
  7. Baker, M. 2011. Method of the year 2011. Nature Methods 9: 1.CrossRefGoogle Scholar
  8. Baltes, N.J., J. Gil-Humanes, T. Cermak, P.A. Atkins, and D.F. Voytas. 2014. DNA replicons for plant genome engineering. The Plant Cell 26: 151–163.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Banerjee, A.K., S. Prat, and D.J. Hannapel. 2006. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science 170: 732–738.CrossRefGoogle Scholar
  10. Barampuram, S., and Z.J. Zhang. 2011. Recent advances in plant transformation. Methods in Molecular Biology 701: 1–35.PubMedCrossRefGoogle Scholar
  11. Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D.A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.PubMedCrossRefGoogle Scholar
  12. Barton, K.A., A.N. Binns, A.J. Matzke, and M.D. Chilton. 1983. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033–1043.PubMedCrossRefGoogle Scholar
  13. Bedell, V.M., Y. Wang, J.M. Campbell, T.L. Poshusta, C.G. Starker, R.G. Krug II, W. Tan, et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491: 114–118.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Belfort, M., and P.S. Perlman. 1995. Mechanisms of intron mobility. Journal of Biological Chemistry 270: 30237–30240.PubMedCrossRefGoogle Scholar
  15. Belhaj, K., A. Chaparro-Garcia, S. Kamoun, and V. Nekrasov. 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9: 39.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bhaskar, P.B., L. Wu, J.S. Busse, B.R. Whitty, A.J. Hamernik, S.H. Jansky, C.R. Buell, P.C. Bethke, and J. Jiang. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology 154: 939–948.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Birhman, R.K., and K. Hosaka. 2000. Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43: 495–502.PubMedCrossRefGoogle Scholar
  18. Bitinaite, J., D.A. Wah, A.K. Aggarwal, and I. Schildkraut. 1998. FokI dimerization is required for DNA cleavage. PNAS 95: 10570–10575.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–1512.PubMedCrossRefGoogle Scholar
  20. Bolotin, A., B. Quinquis, A. Sorokin, and S.D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551–2561.PubMedCrossRefGoogle Scholar
  21. Borlaug, N.E. 2000. Ending world hunger. the promise of biotechnology and the threat of antiscience zealotry. Plant Physiology 124: 487–490.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brigneti, G., A.M. Martín-Hernández, H. Jin, J. Chen, D.C. Baulcombe, B. Baker, and J.D.G. Jones. 2004. Virus-induced gene silencing in solanum species. The Plant Journal 39: 264–272.PubMedCrossRefGoogle Scholar
  23. Broitman, S.L., D.D. Im, and J.R. Fresco. 1987. Formation of the triple-stranded polynucleotide helix, poly(A.A.U). PNAS 84: 5120–5124.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brooks, C., V. Nekrasov, Z.B. Lippman, and J.V. Eck. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology 166: 1292–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brouns, S.J.J., M.M. Jore, M. Lundgren, E.R. Westra, R.J.H. Slijkhuis, A.P.L. Snijders, M.J. Dickman, K.S. Makarova, E.V. Koonin, and J. van der Oost. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964.PubMedCrossRefGoogle Scholar
  26. Butler, N.M., P.A. Atkins, D.F. Voytas, and D.S. Douches. 2015. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PloS One 10: e0144591.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Camacho, A., A.V. Deynze, C. Chi-Ham, and A.B. Bennett. 2014. Genetically engineered crops that fly under the US regulatory radar. Nature Biotechnology 32: 1087–1091.PubMedCrossRefGoogle Scholar
  28. Carroll, D. 2004. Using nucleases to stimulate homologous recombination. Genetic Recombination 262: 195–208.CrossRefGoogle Scholar
  29. Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188: 773–782.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cermak, T., E.L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J.A. Baller, N.V. Somia, A.J. Bogdanove, and D.F. Voytas. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39: e82.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chakravarty, B., G. Wang-Pruski, V. Gustafson, and S. Regan. 2007. Genetic transformation in potato: approaches and strategies. American Journal of Potato Research 84: 301–311.CrossRefGoogle Scholar
  32. Chan, Y.-S., D.S. Huen, R. Glauert, E. Whiteway, and S. Russell. 2013. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience. PloS One 8: e54130.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Char, S.N., E. Unger-Wallace, B. Frame, S.A. Briggs, M. Main, M.H. Spalding, E. Vollbrecht, K. Wang, and B. Yang. 2015. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnology Journal 13: 1002–1010.PubMedCrossRefGoogle Scholar
  34. Chilton, M.D.M., and Q. Que. 2003. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiology 133: 956–965.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cho, J., M.E. Parks, and P.B. Dervan. 1995. Cyclic polyamides for recognition in the minor groove of DNA. PNAS 92: 10389–10392.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Christian, M., T. Cermak, E.L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A.J. Bogdanove, and D.F. Voytas. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757–761.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Christou, P. 2013. Plant genetic engineering and agricultural biotechnology 1983–2013. Trends in Biotechnology 31. Elsevier Ltd: 125–127.Google Scholar
  38. Clasen, B.M., T.J. Stoddard, S. Luo, Z.L. Demorest, J. Li, F. Cedrone, R. Tibebu, et al. 2015. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal. doi:10.1111/pbi.12370.Google Scholar
  39. Comai, Luca. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836–846.PubMedCrossRefGoogle Scholar
  40. Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cornu, T.I., S. Thibodeau-Beganny, E. Guhl, S. Alwin, M. Eichtinger, J.K. Joung, and T. Cathomen. 2008. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Molecular Therapy 16: 352–358.CrossRefPubMedGoogle Scholar
  42. Cui, L., P.K. Wall, J.H. Leebens-Mack, B.G. Lindsay, D.E. Soltis, J.J. Doyle, P.S. Soltis, et al. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Research 16: 738–749.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Curtin, S.J., F. Zhang, J.D. Sander, W.J. Haun, C. Starker, N.J. Baltes, D. Reyon, et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiology 156: 466–473.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Curtin, S.J., D.F. Voytas, and R.M. Stupar. 2012. Genome engineering of crops with designer nucleases. The Plant Genome Journal 5: 42–50.CrossRefGoogle Scholar
  45. Cyranoski, D. 2015. Ethics of embryo editing divides scientists. Nature 519: 272–272.PubMedCrossRefGoogle Scholar
  46. D’Halluin, K., C. Vanderstraeten, J.V. Hulle, J. Rosolowska, I.V.D. Brande, A. Pennewaert, K. D’Hont, et al. 2013. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnology Journal 11: 933–941.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dale, M., B. Finlay, and J.E. Bradshaw. 2003. Progress in improving processing attributes in potato. Trends in Plant Science 8: 310–312.PubMedCrossRefGoogle Scholar
  48. Davey, M.R., P. Anthony, J.B. Power, and K.C. Lowe. 2005. Plant protoplasts: status and biotechnological perspectives. Biotechnology Advances 23: 131–171.PubMedCrossRefGoogle Scholar
  49. De Jong, H., and P.R. Rowe. 1971. Inbreeding in cultivated diploid potatoes. Potato Research 14: 74–83.CrossRefGoogle Scholar
  50. Deltcheva, E., K. Chylinski, C.M. Sharma, K. Gonzales, Y. Chao, Z.A. Pirzada, M.R. Eckert, J. Vogel, and E. Charpentier. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Deng, D., C. Yan, X. Pan, M. Mahfouz, J. Wang, J.-K. Zhu, Y. Shi, and N. Yan. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720–723.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Deveau, H., R. Barrangou, J.E. Garneau, J. Labonté, C. Fremaux, P. Boyaval, D.A. Romero, P. Horvath, and S. Moineau. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology 190: 1390–1400.PubMedCrossRefGoogle Scholar
  53. Doudna, J.A., and E. Charpentier. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1077–1093.CrossRefGoogle Scholar
  54. Doyle, E.L., N.J. Booher, D.S. Standage, D.F. Voytas, V.P. Brendel, J.K. Vandyk, and A.J. Bogdanove. 2012. TAL Effector-Nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Research 40: 117–122.CrossRefGoogle Scholar
  55. Doyle, E.L., B.L. Stoddard, D.F. Voytas, and A.J. Bogdanove. 2013. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends in Cell Biology 23: 390–398.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ellis, B.L., M.L. Hirsch, S.N. Porter, R.J. Samulski, and M.H. Porteus. 2013. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Therapy 20: 35–42.PubMedCrossRefGoogle Scholar
  57. Endelman, J.B. and S.H. Jansky. 2016. Genetic mapping with an inbred line-derived F2 population in potato. Theoretical and Applied Genetics. doi:10.1007/s00122-016-2673-7.
  58. Esvelt, K.M., P. Mali, J.L. Braff, M. Moosburner, S.J. Yaung, and G.M. Church. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods 10: 1116–1123.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fauser, F., N. Roth, M. Pacher, G. Ilg, R. Sánchez-Fernández, C. Biesgen, and H. Puchta. 2012. In planta gene targeting. PNAS 109: 7535–7540.Google Scholar
  60. Feng, Z., Y. Mao, N. Xu, B. Zhang, P. Wei, D.-L. Yang, Z. Wang, et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. PNAS 111: 4632–4637.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Freeman, J.P., J. Draper, M.R. Davey, E.C. Cocking, K.M. Gartland, K. Harding, and D. Pental. 1984. A comparison of methods for plasmid delivery into plant protoplasts. Plant & Cell Physiology 25: 1353–1365.Google Scholar
  62. Fu, Y., J.D. Sander, D. Reyon, V.M. Cascio, and J.K. Joung. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32: 279–284.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gaj, T., A.C. Mercer, S.J. Sirk, H.L. Smith, and C.F. Barbas. 2013. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Research 41: 3937–3946.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gantz, V.M., and E. Bier. 2015. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 348: 442–444.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gao, H., J. Smith, M. Yang, S. Jones, V. Djukanovic, M.G. Nicholson, A. West, et al. 2010. Heritable targeted mutagenesis in maize using a designed endonuclease. The Plant Journal 61: 176–187.PubMedCrossRefGoogle Scholar
  66. Garneau, J.E., M.-È. Dupuis, M. Villion, D.A. Romero, R. Barrangou, P. Boyaval, C. Fremaux, P. Horvath, A.H. Magadán, and S. Moineau. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.PubMedCrossRefGoogle Scholar
  67. Gasiunas, G., R. Barrangou, P. Horvath, and V. Siksnys. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109: E2579–E2586.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gorbunova, V., and A.A. Levy. 1999. How plants make ends meet: DNA double-strand break repair. Trends in Plant Science 4: 263–269.PubMedCrossRefGoogle Scholar
  69. Grizot, S., A. Duclert, S. Thomas, P. Duchateau, and F. Pâques. 2011. Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease. Nucleic Acids Research 39: 6124–6136.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Haft, D.H., J. Selengut, E.F. Mongodin, and K.E. Nelson. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/cas subtypes exist in prokaryotic genomes. PLoS Computational Biology 1: 474–483.CrossRefGoogle Scholar
  71. Hale, C.R., P. Zhao, S. Olson, M.O. Duff, B.R. Graveley, L. Wells, R.M. Terns, and M.P. Terns. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945–956.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Halterman, D., J. Guenthner, S. Collinge, N. Butler, and D. Douches. 2015. Biotech potatoes in the 21st century: 20 years since the first biotech potato. American Journal of Potato Research. doi:10.1007/s12230-015-9485-1.Google Scholar
  73. Hanneman, R.E. 1989. The potato germplasm resource. American Potato Journal 66: 655–667.CrossRefGoogle Scholar
  74. Herrera-Estrella, L., A. Depicker, M. Van Montagu, and J. Schell. 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213.CrossRefGoogle Scholar
  75. Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A.V. Deynze, W. De Jong, et al. 2013. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 3: 1003–1013.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hirsch, C.D., J.P. Hamilton, K.L. Childs, J. Cepela, E. Crisovan, B. Vaillancourt, C.N. Hirsch, M. Habermann, B. Neal, and C.R. Buell. 2014. Spud DB: a resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. The Plant Genome 7: 1–12.Google Scholar
  77. Hsu, P.D., E.S. Lander, and F. Zhang. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262–1278.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hunter, P. 2014. “Genetically modified lite” placates public but not activists: new technologies to manipulate plant genomes could help to overcome public concerns about GM crops. EMBO Reports 15: 138–141.PubMedPubMedCentralGoogle Scholar
  79. Ishino, Y., H. Shinagawa, K. Makino, M. Amemura, and A. Nakata. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429–5433.PubMedPubMedCentralGoogle Scholar
  80. Jacquier, A., and B. Dujon. 1985. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41: 383–394.PubMedCrossRefGoogle Scholar
  81. James, C. 2014. Global status of commercialized biotech/GM Crops. ISAAA Brief. Vol. 49.Google Scholar
  82. Jansen, R., J.D.V. Embden, W. Gaastra, and L.M. Schouls. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43: 1565–1575.PubMedCrossRefGoogle Scholar
  83. Jansky, S.H., Y.S. Chung, and P. Kittipadukal. 2014. M6: A diploid potato inbred line for use in breeding and genetics research. Journal of Plant Registrations 8: 195–199.CrossRefGoogle Scholar
  84. Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.PubMedCrossRefGoogle Scholar
  85. Jinek, M., F. Jiang, D.W. Taylor, S.H. Sternberg, E. Kaya, E. Ma, C. Anders, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Joung, K., D.F. Voytas, and T. Cathomen. 2010. Reply to “Successful genome editing with modularly assembled zinc finger nucleases. Nature Methods 7: 91–92.PubMedCentralCrossRefGoogle Scholar
  87. Juillerat, A., G. Dubois, J. Valton, S. Thomas, S. Stella, A. Maréchal, S. Langevin, et al. 2014. Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Research 42: 5390–5402.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Juillerat, A., C. Pessereau, G. Dubois, V. Guyot, A. Maréchal, J. Valton, F. Daboussi, L. Poirot, A. Duclert, and P. Duchateau. 2015. Optimized tuning of TALEN specificity using non-conventional RVDs. Scientific Reports 5: 8150.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jurica, M.S., R.J. Monnat, and B.L. Stoddard. 1998. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Molecular Cell 2: 469–476.PubMedCrossRefGoogle Scholar
  90. Kay, S., and U. Bonas. 2009. How Xanthomonas type III effectors manipulate the host plant. Current Opinion in Microbiology 12: 37–43.PubMedCrossRefGoogle Scholar
  91. Kim, Y.G., and S. Chandrasegaran. 1994. Chimeric restriction endonuclease. PNAS 91: 883–887.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kim, H., and J.-S. Kim. 2014. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15: 321–334.PubMedCrossRefGoogle Scholar
  93. Kim, Y.G., J. Cha, and S. Chandrasegaran. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93: 1156–1160.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lanphier, E., F. Urnov, S.E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519: 410–411.PubMedCrossRefGoogle Scholar
  95. Ledford, H. 2015. CRISPR, the disruptor. Nature 522: 20–24.PubMedCrossRefGoogle Scholar
  96. Li, L., L.P. Wu, and S. Chandrasegaran. 1992. Functional domains in Fok I restriction endonuclease. PNAS 89: 4275–4279.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Li, T., S. Huang, X. Zhao, D. Wright, S. Carpenter, M.H. Spalding, D.P. Weeks, and B. Yang. 2011a. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research 39: 6315–6325.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li, T., S. Huang, W.Z. Jiang, D. Wright, M.H. Spalding, D.P. Weeks, and B. Yang. 2011b. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39: 359–372.PubMedCrossRefGoogle Scholar
  99. Li, T., B. Liu, M.H. Spalding, D.P. Weeks, and B. Yang. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30: 390–392.PubMedCrossRefGoogle Scholar
  100. Li, J.F., J.E. Norville, J. Aach, M. McCormack, D. Zhang, J. Bush, G.M. Church, and J. Sheen. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Liang, Z., K. Zhang, K. Chen, and C. Gao. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68.PubMedCrossRefGoogle Scholar
  102. Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6: 363–372.CrossRefGoogle Scholar
  103. Lindhout, P., D. Meijer, T. Schotte, R.C.B. Hutten, R.G.F. Visser, and H.J. van Eck. 2011. Towards F1 hybrid seed potato breeding. Potato Research 54: 301–312.CrossRefGoogle Scholar
  104. Liu, L., T. Van Tonder, G. Pietersen, J.W. Davies, and J. Stanley. 1997. Molecular characterization of a subgroup I geminivirus from a legume in South Africa. Journal of General Virology 78: 2113–2117.PubMedCrossRefGoogle Scholar
  105. Liu, L., J.W. Davies, and John Stanley. 1998. Mutational analysis of bean yellow dwarf virus, a geminivirus of the genus Mastrevirus that is adapted to dicotyledonous plants. Journal of General Virology 79: 2265–2274.PubMedCrossRefGoogle Scholar
  106. Liu, W., J.S. Yuan, and C.N. Stewart. 2013. Advanced genetic tools for plant biotechnology. Nature Reviews Genetics 14: 781–793.PubMedCrossRefGoogle Scholar
  107. Lloyd, A., C.L. Plaisier, D. Carroll, and G.N. Drews. 2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. PNAS 102: 2232–2237.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lusser, M., C. Parisi, D. Plan, and E. Rodríguez-Cerezo. 2012. Deployment of new biotechnologies in plant breeding. Nature Biotechnology 30: 231–239.PubMedCrossRefGoogle Scholar
  109. Maeder, M.L., S. Thibodeau-Beganny, A. Osiak, D. Wright, R.M. Anthony, M. Eichtinger, T. Jiang, et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Molecular Therapy 31: 294–301.Google Scholar
  110. Maeseele, P. 2013. Risk conflicts, critical discourse analysis and media discourses on GM crops and food. Journalism 16: 278–297.CrossRefGoogle Scholar
  111. Mahfouz, M.M., L. Li, M. Shamimuzzaman, A. Wibowo, X. Fang, and J.-K. Zhu. 2011. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. PNAS 108: 2623–2628.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mak, A.N.-S., P. Bradley, R.A. Cernadas, A.J. Bogdanove, and B.L. Stoddard. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716–719.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mali, P., A. John, P.B. Stranges, K.M. Esvelt, M. Moosburner, S. Kosuri, L. Yang, and G.M. Church. 2013. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 31: 833–838.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Marton, I., A. Zuker, E. Shklarman, V. Zeevi, A. Tovkach, S. Roffe, M. Ovadis, T. Tzfira, and A. Vainstein. 2010. Nontransgenic genome modification in plant cells. Plant Physiology 154: 1079–1087.PubMedPubMedCentralCrossRefGoogle Scholar
  115. McDougall, P. 2011. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. A Consultancy Study for Crop Life International.Google Scholar
  116. Miller, J.C., M.C. Holmes, J. Wang, D.Y. Guschin, Y.-L. Lee, I. Rupniewski, C.M. Beausejour, et al. 2007. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology 25: 778–785.PubMedCrossRefGoogle Scholar
  117. Miller, J.C., S. Tan, G. Qiao, K.A. Barlow, J. Wang, D.F. Xia, X. Meng, et al. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology 29: 143–148.PubMedCrossRefGoogle Scholar
  118. Mao, Y., H. Zhang, N. Xu, B. Zhang, F. Gou, and J.-K. Zhu. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6: 2008–2011.Google Scholar
  119. Mojica, F.J.M., C. Díez-Villaseñor, E. Soria, and G. Juez. 2000. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology 36: 244–246.PubMedCrossRefGoogle Scholar
  120. Mojica, F.J.M., C. Díez-Villaseñor, J. García-Martínez, and E. Soria. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60: 174–182.PubMedCrossRefGoogle Scholar
  121. Moscou, M.J., and A.J. Bogdanove. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.PubMedCrossRefGoogle Scholar
  122. Mussolino, C., R. Morbitzer, F. Lütge, N. Dannemann, T. Lahaye, and T. Cathomen. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research 39: 9283–9293.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Nekrasov, V., B. Staskawicz, D. Weigel, J.D. Jones, and S. Kamoun. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31: 691–693.PubMedCrossRefGoogle Scholar
  124. Netter, P., E. Petrochilo, P.P. Slonlmski, M. Bolotin-Fukuhara, D. Coen, and C. De Ginitique. 1974. Mitochondrial genetics VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin in S. cerevisiae. Genetics 78: 1063–1100.PubMedPubMedCentralGoogle Scholar
  125. Nicolia, A., E. Proux-Wéra, I. Åhman, N. Onkokesung, M. Andersson, E. Andreasson, and L.-H. Zhu. 2015. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. Journal of Biotechnology 204: 17–24.PubMedCrossRefGoogle Scholar
  126. Nishimasu, H., F.A. Ran, P.D. Hsu, S. Konermann, S.I. Shehata, N. Dohmae, R. Ishitani, F. Zhang, and O. Nureki. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–949.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Noël, L.D., N. Denancé, and B. Szurek. 2013. Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Frontiers in Plant Science 4: 333.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Orr-Weaver, T.L., J.W. Szostak, and R.J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. PNAS 78: 6354–6358.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Osakabe, K., Y. Osakabe, and S. Toki. 2011. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. PNAS 108: 433–433.Google Scholar
  130. Pacher, M., W. Schmidt-Puchta, and H. Puchta. 2007. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175: 21–29.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Paszkowski, J., M. Baur, A. Bogucki, and I. Potrykus. 1988. Gene targeting in plants. The EMBO Journal 7: 4021–4026.PubMedPubMedCentralGoogle Scholar
  132. Pavletich, N.P., and C. Pabo. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252: 809–817.PubMedCrossRefGoogle Scholar
  133. Paz, M.M., and R.E. Veilleux. 1999. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breeding 118: 53–57.CrossRefGoogle Scholar
  134. Petolino, J.F. 2015. Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular & Developmental Biology. Plant 51: 1–8.CrossRefGoogle Scholar
  135. Petolino, J.F., A. Worden, K. Curlee, J. Connell, T.L.S. Moynahan, C. Larsen, and S. Russell. 2010. Zinc finger nuclease-mediated transgene deletion. Plant Molecular Biology 73: 617–628.PubMedCrossRefGoogle Scholar
  136. PGSC. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.CrossRefGoogle Scholar
  137. Port, F., N. Muschalik, and S.L. Bullock. 2015. Systematic evaluation of Drosophila CRISPR tools reveals safe and robust alternatives to autonomous gene drives in basic research. G3 5: 1493–1502.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Pruett-Miller, S.M., J.P. Connelly, M.L. Maeder, J.K. Joung, and M.H. Porteus. 2008. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Molecular Therapy 16: 707–717.PubMedCrossRefGoogle Scholar
  139. Puchta, H. 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56: 1–14.PubMedCrossRefGoogle Scholar
  140. Puchta, H., and F. Fauser. 2013. Synthetic nucleases for genome engineering in plants: prospects for a bright future. The Plant Journal: 1–15.Google Scholar
  141. Puchta, H., B. Dujon, and B. Hohn. 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research 21: 5034–5040.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Puchta, H., B. Dujon, and B. Hohn. 1996. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. PNAS 93: 5055–5060.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Qi, Y., X. Li, Y. Zhang, C.G. Starker, N.J. Baltes, F. Zhang, J.D. Sander, D. Reyon, J.K. Joung, and D.F. Voytas. 2013a. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 3: 1707–1715.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Qi, Y., Y. Zhang, F. Zhang, J.A. Baller, S.C. Cleland, Y. Ryu, C.G. Starker, and D.F. Voytas. 2013b. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Research 23: 547–554.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Ramirez, C.L., J.E. Foley, D.A. Wright, F. Müller-Lerch, S.H. Rahman, T.I. Cornu, R.J. Winfrey, et al. 2008. Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5: 374–375.PubMedCrossRefGoogle Scholar
  146. Ran, F.A., P.D. Hsu, C.Y. Lin, J.S. Gootenberg, S. Konermann, A.E. Trevino, D.A. Scott, et al. 2013. Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Salomon, S., and H. Puchta. 1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. The EMBO Journal 17: 6086–6095.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sander, J.D., E.J. Dahlborg, M.J. Goodwin, L. Cade, F. Zhang, D. Cifuentes, S.J. Curtin, et al. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8: 67–69.PubMedCrossRefGoogle Scholar
  149. Scalley-Kim, M., A. McConnell-Smith, and B.L. Stoddard. 2007. Coevolution of a homing endonuclease and its host target sequence. Journal of Molecular Biology 372: 1305–1319.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schuermann, D., J. Molinier, O. Fritsch, and B. Hohn. 2005. The dual nature of homologous recombination in plants. Trends in Genetics 21: 172–181.PubMedCrossRefGoogle Scholar
  151. Sha, A., J. Zhao, K. Yin, Y. Tang, Y. Wang, X. Wei, Y. Hong, and Y. Liu. 2013. Virus-based microRNA silencing in plants. Plant Physiology 164: 36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Shan, Q., Y. Wang, K. Chen, Z. Liang, J. Li, Y. Zhang, K. Zhang, et al. 2013a. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 6: 1365–1368.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Shan, Q., Y. Wang, J. Li, Y. Zhang, K. Chen, Z. Liang, K. Zhang, et al. 2013b. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31: 686–688.PubMedCrossRefGoogle Scholar
  154. Sharma, S.K., D. Bolser, J. De Boer, M. Sønderkær, W. Amoros, M.F. Carboni, J.M. D’Ambrosio, et al. 2013. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 3: 2031–2047.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Shukla, V.K., Y. Doyon, and J.C. Miller. 2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459: 437–441.PubMedCrossRefGoogle Scholar
  156. Siebert, R., and H. Puchta. 2002. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. The Plant Cell 14: 1121–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Smith, G.R. 1989. Homologous recombination in E. coli: multiple pathways for multiple reasons. Cell 58: 807–809.PubMedCrossRefGoogle Scholar
  158. Stoddard, B.L. 2005. Homing endonuclease structure and function. Quarterly Reviews of Biophysics 38: 49–95.PubMedCrossRefGoogle Scholar
  159. Stoddard, B.L. 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19: 7–15.PubMedCentralCrossRefPubMedGoogle Scholar
  160. Sun, N., and H. Zhao. 2013. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnology and Bioengineering 110: 1811–1821.PubMedCrossRefGoogle Scholar
  161. Szczepek, M., V. Brondani, J. Büchel, L. Serrano, D.J. Segal, and T. Cathomen. 2007. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotechnology 25: 786–793.PubMedCrossRefGoogle Scholar
  162. Tang, T.-H., J.-P. Bachellerie, T. Rozhdestvensky, M.-L. Bortolin, H. Huber, M. Drungowski, T. Elge, J. Brosius, and A. Hüttenhofer. 2002. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. PNAS 99: 7536–7541.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Thomas, M. 2013. Fields of gold. Nature 497: 5–6.Google Scholar
  164. Toevs, E.A., J.F. Guenthner, A.J. Johnson, C.S. McIntosh, and M.K. Thornton. 2011. An industry perspective of all-native and transgenic potatoes. AgBioforum 14: 14–19.Google Scholar
  165. Townsend, J.A., D.A. Wright, R.J. Winfrey, F. Fu, M.L. Maeder, J.K. Joung, and D.F. Voytas. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459: 442–445.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tsai, H., T. Howell, R. Nitcher, V. Missirian, B. Watson, K.J. Ngo, M. Lieberman, et al. 2011. Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiology 156: 1257–1268.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tsai, S.Q., N. Wyvekens, C. Khayter, J.A. Foden, V. Thapar, D. Reyon, M.J. Goodwin, M.J. Aryee, and J.K. Joung. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32: 569–576.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Tuteja, N., S. Verma, R.K. Sahoo, S. Raveendar, and B.L. Reddy. 2012. Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. Journal of Biosciences 37: 167–197.PubMedCrossRefGoogle Scholar
  169. Tzfira, T., L.R. Frankman, M. Vaidya, and V. Citovsky. 2003. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiology 133: 1011–1023.PubMedPubMedCentralCrossRefGoogle Scholar
  170. USDA. 2012. USDA Organic 101.Google Scholar
  171. Van Montagu, M. 2011. It is a long way to GM agriculture. Annual Review of Plant Biology 62: 1–23.PubMedCrossRefGoogle Scholar
  172. Voytas, D.F., and C. Gao. 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biology 12: e1001877.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Vu, G.T.H., H.X. Cao, K. Watanabe, G. Hensel, F.R. Blattner, J. Kumlehn, and I. Schubert. 2014. Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. The Plant Cell 26: 2156–2167.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Waltz, E. 2012. Tiptoeing around transgenics. Nature Biotechnology 30: 215–217.PubMedCrossRefGoogle Scholar
  175. Waltz, E. 2015a. Nonbrowning GM apple cleared for market. Nature Biotechnology 33: 326–327.PubMedCrossRefGoogle Scholar
  176. Waltz, E. 2015b. USDA approves next-generation GM potato. Nature Biotechnology 33: 12–13.PubMedCrossRefGoogle Scholar
  177. Wang, T.L., C. Uauy, F. Robson, and B. Till. 2012. TILLING in extremis. Plant Biotechnology Journal 10: 761–772.PubMedCrossRefGoogle Scholar
  178. Wang, Y., X. Cheng, Q. Shan, Y. Zhang, J. Liu, C. Gao, and J.-L. Qiu. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.PubMedCrossRefGoogle Scholar
  179. Wang, S., S. Zhang, W. Wang, X. Xiong, F. Meng, and X. Cui. 2015. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports. doi:10.1007/s00299-015-1816-7.PubMedCentralGoogle Scholar
  180. Watson, J.D., and F.H.C. Crick. 1953. Molecular structure of nucleic acids. Nature 171: 737–738.PubMedCrossRefGoogle Scholar
  181. Weeks, D.P., M.H. Spalding, and B. Yang. 2015. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnology Journal. doi:10.1111/pbi.12448.PubMedGoogle Scholar
  182. Weinthal, D.M., R.A. Taylor, and T. Tzfira. 2013. Non-homologous end-joining-mediated gene replacement in plant cells. Plant Physiology 162: 390–400.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wendt, T., P.B. Holm, C.G. Starker, M. Christian, D.F. Voytas, H. Brinch-Pedersen, and I.B. Holme. 2013. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology 83: 279–285.PubMedCrossRefGoogle Scholar
  184. Wiedenheft, B., S.H. Sternberg, and J.A. Doudna. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331–338.PubMedCrossRefGoogle Scholar
  185. Wohlers, A.E. 2013. Labeling of genetically modified food. Politics and the Life Sciences 32: 58–72.CrossRefGoogle Scholar
  186. Wolt, J.D., K. Wang, and B. Yang. 2015. The regulatory status of genome-edited crops. Plant Biotechnology Journal. doi:10.1111/pbi.12444.PubMedGoogle Scholar
  187. Wright, D.A., J.A. Townsend, R.J. Winfrey, P.A. Irwin, J. Rajagopal, P.M. Lonosky, B.D. Hall, M.D. Jondle, and D.F. Voytas. 2005. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. The Plant Journal 44: 693–705.PubMedCrossRefGoogle Scholar
  188. Wu, T.C., and M. Lichten. 1995. Factors that affect the location and frequency of meiosis-induced double- strand breaks in Saccharomyces cerevisiae. Genetics 140: 55–66.PubMedPubMedCentralGoogle Scholar
  189. Wu, L., P.B. Bhaskar, J.S. Busse, R. Zhang, P.C. Bethke, and J. Jiang. 2011. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Science 51: 981–990.CrossRefGoogle Scholar
  190. Yang, J., Y. Zhang, P. Yuan, Y. Zhou, C. Cai, Q. Ren, D. Wen, C. Chu, H. Qi, and W. Wei. 2014. Complete decoding of TAL effectors for DNA recognition. Cell Research 24: 628–631.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zhang, F., M.L. Maeder, E. Unger-Wallace, J.P. Hoshaw, D. Reyon, M. Christian, X. Li, et al. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. PNAS 107: 12028–12033.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zhang, Y., F. Zhang, X. Li, J.A. Baller, Y. Qi, C.G. Starker, A.J. Bogdanove, and D.F. Voytas. 2013. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology 161: 20–27.PubMedCrossRefGoogle Scholar
  193. Zhang, F., Y. Wen, and X. Guo. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics 23: 40–46.PubMedCrossRefGoogle Scholar
  194. Zhu, X., C. Richael, P. Chamberlain, J.S. Busse, A.J. Bussan, J. Jiang, and P.C. Bethke. 2014. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PloS One 9: e93381.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2016

Authors and Affiliations

  1. 1.Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations