American Journal of Potato Research

, Volume 92, Issue 4, pp 473–482 | Cite as

Site, Year and Cultivar Effects on Relationships Between Periderm Nutrient Contents and Common Scab Severity

  • Václav Krištůfek
  • Jiří Diviš
  • Marek Omelka
  • Jan Kopecký
  • Markéta Sagová-Marečková


Common scab (CS) severity was assessed in relationship to mineral contents of potato periderm in 18 cultivars varying in maturity period and CS susceptibility. Two field experiments, one repeated in 3 years, were conducted. The effect of site, cultivar and growing period on the disease severity was always significant but not that of year to year variability. Zn, Mn and Fe periderm contents were related to site, while Ca content to cultivar effects. In both experiments, the CS severity was positively correlated to calcium and negatively to phosphorus periderm content, while correlations of CS severity to other nutrients were dependent on site or year. Since soil pH, Ca and P soil contents were not different between sites, relatively small differences in other soil chemical characteristics combined with specific cultivar nutrient requirements seemed to determine the CS severity.


Common potato scab Streptomyces scabies Micronutrients Common scab resistance 


Se analizó la severidad de la roña común (CS) en relación con el contenido mineral del peridermo de papa en 18 variedades que difieren en período de madurez y en susceptibilidad a CS. Se condujeron dos experimentos de campo, uno de ellos repetido en tres años. El efecto del lugar, la variedad y el período de crecimiento sobre la severidad de la enfermedad fue siempre significativo pero no el de variabilidad de año con año. El contenido de Zn, Mn, y Fe en el peridermo estuvo relacionado al lugar, mientras que el contenido de Ca a los efectos por variedad. En ambos experimentos la severidad de CS se correlacionó positivamente al calcio y negativamente al contenido de fosforo en el peridermo, mientras que las correlaciones de la severidad de CS a otros nutrientes estuvo dependiente del sitio o el año. Considerando que el pH del suelo y el contenido de Ca y P en el suelo no fueron diferentes entre lugares, las relativamente pequeñas diferencias en otras características químicas del suelo, en combinación con los requerimientos nutrimentales específicos por variedad, aparentemente determinaron la severidad de CS.



This work was supported by the Ministry of Agriculture of the Czech Republic (Institutional Research Concept RO0415 and grant No. QJ1210359)

Supplementary material

12230_2015_9456_MOESM1_ESM.pdf (545 kb)
ESM 1 (PDF 544 kb)


  1. Bretz, F., T. Hothorn, and P. Westfall. 2010. Multiple comparisons using R. Boca Raton: CRC Press.CrossRefGoogle Scholar
  2. Broadley, M.R., P.J. White, J.P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. New Phytologist 173: 677–702.CrossRefPubMedGoogle Scholar
  3. Busse, J.S., and J.P. Palta. 2006. Investigating the in vivo calcium transport path to developing potato tuber using 45Ca: a new concept in potato tuber calcium nutrition. Physiologia Plantarum 128: 313–323.CrossRefGoogle Scholar
  4. Core Team, R. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  5. Davis, J.R., McMaster, R.H. Callihan, J.G. Garner, and R.E. McDole. 1974. The relationship of irrigation timing and soil treatments to control potato scab. Phytopathology 64: 1404–1410.CrossRefGoogle Scholar
  6. Davis, J.R., R.E. McDole, and R.H. Callihan. 1976. Fertilizer effects on common scab of potato and the relation of calcium and phosphatephosphorus. Phytopathology 66: 1236–1241.CrossRefGoogle Scholar
  7. Dees, M.W., and L.A. Wanner. 2012. In search of better management of potato common scab. Potato Research 55: 249–268.CrossRefGoogle Scholar
  8. Driscoll, J., J. Coombs, R. Hammerschmidt, W. Kirk, L. Wanner, and D. Douches. 2009. Greenhouse and field nursery evaluation for potato common scab tolerance in a tetraploid population. American Journal of Potato Research 86: 96–101.CrossRefGoogle Scholar
  9. Errakhi, R., A. Dauphin, P. Meimoun, A. Lehner, D. Reboutier, P. Vatsa, J. Briand, K. Madiona, J.P. Rona, M. Barakate, D. Wendehenne, C. Beaulieu, and F. Bouteau. 2008. An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. Journal of Exprimental Botany 59: 4259–4270.CrossRefGoogle Scholar
  10. Faraway, J.J. 2006. Extending the linear model with R. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  11. Gillespie, L.J. 1918. The growth of the potato scab organism at various hydrogen ion concentrations as related to the comparative freedom of acid soils from the potato scab. Phytopathology 8: 257–269.Google Scholar
  12. Goth, R.W., K.G. Haynes, R.J. Zouny, D.R. Wilson, and F.I. Lauer. 1995. Relative resistance of the potato cultivar Kranz to common scab caused by Streptomyces scabies as determined by cluster analysis. American Potato Journal 72: 505–511.CrossRefGoogle Scholar
  13. Haynes, K.G., R.W. Goth, and R.J. Young. 1997. Genotype × environment interactions for resistance to common scab in tetraploid potato. Crop Science 37: 1163–1167.CrossRefGoogle Scholar
  14. Haynes, K.G., B.J. Christ, C.R. Burkhart, and B.T. Vinyard. 2009. Heritability of resistance to common scab in diploid potatoes. American Journal of Potato Research 86: 165–170.CrossRefGoogle Scholar
  15. Haynes, K.G., L.A. Wanner, C.A. Thill, J.M. Bradeen, J. Miller, R.G. Novy, J.L. Whitworth, D.L. Corsini, and B.T. Vinyard. 2010. Common scab trials of potato varieties and advanced selections at three U.S. locations. American Journal of Potato Research 87: 261–276.CrossRefGoogle Scholar
  16. Huber, D.M., and S. Haneklaus. 2007. Managing nutrition to control plant disease. Landbauforschung Völkenrode 4: 313–322.Google Scholar
  17. Jalali, M. 2009. Phosphorus availability as influenced by organic residues in five calcareous soils. Compost Science and Utilization 17: 241–246.CrossRefGoogle Scholar
  18. Jalali, M., and S. Moharami. 2010. Effects of the addition of phosphorus on the redistribution of cadmium, copper, lead, nickel, and zinc among soil fractions in contaminated calcareous soil. Soil and Sediment Contamination 19: 88–102.CrossRefGoogle Scholar
  19. Krištůfek, V., J. Diviš, I. Dostálková, and J. Kalčík. 2000. Accumulation of mineral elements in tuber periderm of potato cultivars differing in susceptibility to common scab. Potato Research 43: 107–114.CrossRefGoogle Scholar
  20. Lacey, M.J., and C.R. Wilson. 2001. Relationship of common scab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. Journal of Phytopathology 149: 679–683.CrossRefGoogle Scholar
  21. Lambert, D.H., and F.E. Manzer. 1991. Relationship of calcium to potato scab. Phytopathology 81: 632–636.CrossRefGoogle Scholar
  22. Lambert, D.H., M.L. Powelson, and W.R. Stevenson. 2005. Nutritional interactions influencing diseases of potato. American Journal of Potato Research 82: 309–319.CrossRefGoogle Scholar
  23. Lawrence, C.H., M.C. Clark, and R.R. King. 1990. Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology 80: 606–608.CrossRefGoogle Scholar
  24. Lazarovits, G., J. Hill, G. Patterson, L. Kenneth, K.L. Conn, and N.S. Crump. 2007. Edaphic soil levels of mineral nutrients, pH, organic matter, and cationic exchange capacity in the geocaulosphere associated with potato common scab. Phytopathology 97: 1071–1082.CrossRefPubMedGoogle Scholar
  25. Loria, R., R.A. Bukhalid, B.A. Fry, and R.R. King. 1997. Plant pathogenicity in the genus streptomyces. Plant Diseases 81: 836–846.CrossRefGoogle Scholar
  26. McGregor, A.J., and G.C.S. Wilson. 1966. The influence of manganese on the development of potato scab. Plant and Soil 25: 3–16.CrossRefGoogle Scholar
  27. Mills, H.A., and J.B. Jones. 1996. Plant analysis handbook II: a practical sampling, preparation, analysis, and interpretation guide. Athens: EUA. 422 p.Google Scholar
  28. Pinheiro, J.C., and D.M. Bates. 2000. Mixed-effects models in S and S-PLUS. New York, Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  29. Sagova-Mareckova, M., O. Daniel, M. Omelka, V. Kristufek, J. Divis, and J. Kopecky. 2015. Determination of factors associated with natural soil suppressivity to potato common scab. PLoS One 10, e0116291.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Sedláková, V., J. Dejmalová, P. Dolezal, E. Hausvater, P. Sedlák, and P. Bastová. 2013. Characterization of forty-four potato varieties for resistance to common scab, black scurf and silver scurf. Crop Protection 48: 82–87.CrossRefGoogle Scholar
  31. Smolders, E., S.P. McGrath, E. Lombi, C.C. Karman, R. Bernhard, D. Cools, K. Van den Brande, B. van Os, and N. Walrave. 2003. Comparison of toxicity of zinc for soil microbial processes between laboratory-contamined and polluted field soils. Environmental Toxicology and Chemistry 22: 2592–2598.CrossRefPubMedGoogle Scholar
  32. Sommers, L.E., and D.W. Nelson. 1972. Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Science Society of America Proceedings 36: 902–904.CrossRefGoogle Scholar
  33. Sturz, A.V., D.A.J. Ryan, A.D. Coffin, B.G. Matheson, W.J. Arsenault, J. Kimpinski, and B.R. Christie. 2004. Stimulating disease suppression in soils: sulphate fertilizers can increase biodiversity and antibiosis ability of root zone bacteria against streptomyces scabies. Soil Biology and Biochemistry 36: 343–352.CrossRefGoogle Scholar
  34. Tavallali, V., M. Rahemi, M. Kartoun, B. Panahi, S. Karimi, A. Ramezanian, and M. Vaezpour. 2009. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae 123: 272–279.CrossRefGoogle Scholar
  35. Tegg, R.S., and C.R. Wilson. 2010. Relationship of resistance to common scab disease and tolerance to thaxtomin A toxicity within potato cultivars. European Journal of Plant Pathology 128: 143–148.CrossRefGoogle Scholar
  36. Tegg, R.S., L. Melian, C.R. Wilson, and S. Shabal. 2005. Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiology 46: 638–648.CrossRefPubMedGoogle Scholar
  37. Vokál, B. 1985. Rational protection and support of potatoes. In: Methods for introducing of research results to agricultural practice. Institute for Agricultural and Food Informations, Prague, [in Czech].Google Scholar
  38. Wanner, L.A. 2006. A Survey of genetic variation in streptomyces isolates causing potato common scab in the United States. Phytopathology 96: 1363–1371.CrossRefPubMedGoogle Scholar
  39. Wanner, L.A. 2009. A patchwork of streptomyces species isolated from potato common scab lesions in North America. American Journal of Potato Research 86: 247–264.CrossRefGoogle Scholar
  40. Waterer, D. 2002. Management of common scab of potato using planting and harvest dates. Canadian Journal of Plant Sciences 82: 85–189.CrossRefGoogle Scholar
  41. Wenzl, H., and J. Demel. 1967. Bildskalen für die Beurteilung von Kartoffelschorf und Rhizoctonia-Pocken. Der Pflanzenarzt 20: 77–78.Google Scholar
  42. Westermann, D.T. 1993. Fertility management. In Potato health management, ed. R.C. Rowe, 77–86. St. Paul: APS Press.Google Scholar
  43. Wiechel T.J., and N.S. Crump. 2010. Soil nutrition and common scab disease of potato in Australia. 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia. Published on DVD.Google Scholar
  44. Zbíral, J. 1995. Soil analyses, Part 1. Czech Central Institute for Supervising and Testing in Agriculture, Brno, Czech Republic [in Czech].Google Scholar

Copyright information

© The Potato Association of America 2015

Authors and Affiliations

  • Václav Krištůfek
    • 1
  • Jiří Diviš
    • 2
  • Marek Omelka
    • 3
  • Jan Kopecký
    • 4
  • Markéta Sagová-Marečková
    • 4
  1. 1.Biology Centre of the Academy of Sciences of the Czech Republicv. v. i., Institute of Soil BiologyČeské BudějoviceCzech Republic
  2. 2.Faculty of AgricultureUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Faculty of Mathematics and Physics, Department of Probability and Mathematical StatisticsCharles UniversityPrague 8Czech Republic
  4. 4.Crop Research InstitutePrague 6Czech Republic

Personalised recommendations