American Journal of Potato Research

, Volume 92, Issue 1, pp 128–137 | Cite as

Low-Cost Potato Tissue Culture with Microwave and Bleach Media Preparation and Sterilization

  • Brooke N. WeberEmail author
  • R. Andrews Witherell
  • Amy O. Charkowski


Labor and equipment costs are the main expenses in potato micropropagation. To determine if we could reduce costs associated with media sterilization, a disinfectant, sodium hypochlorite (NaOCl), in combination with microwave heating, were assayed as media sterilants. Incorporating a common 5 % NaOCl household beach at a concentration of 9 ppm (active chlorine) in media sterilized with an autoclave or microwave oven controlled microorganism growth and maintained plantlet growth performance. Non-sterile 473 ml (16 oz.) clear deli containers were selected as an inexpensive replacement for traditional culture vessels and were effectively sterilized with a 50 ppm (active chlorine) NaOCl solution. Reuse of the non-sterile clear deli containers and alternate media water sources were also tested but this decreased plantlet growth performance. Comparison of a controlled growth chamber and ambient laboratory conditions was also investigated. Microorganism growth was significantly less in a controlled growth chamber (5 %) as compared to uncontrolled conditions (26–36 %).


Sodium hypochlorite Clear deli container Contamination Micropropagation Plantlets 


Los costos de mano de obra y de equipo son los principales gastos en la micropropagación de papa. Con el fin de determinar si podríamos reducir los costos asociados con la esterilización del medio, se probó un desinfestante, hipoclorito de sodio (NaOCl), en combinación con calentamiento en el horno de microondas, como esterilizantes del medio. La incorporación de blanqueador doméstico de NaOCl común al 5 % a una concentración de 9 ppm (cloro activo), en medio esterilizado en una autoclave o en horno de microondas, controló el crecimiento de microorganismos y mantuvo el comportamiento del crecimiento de la plántula. Se seleccionaron recipientes transparentes no estériles de alimentos de 473 ml (16 oz.), como un reemplazo económico a los recipientes de cultivo tradicionales y se esterilizaron efectivamente con 50 ppm (cloro activo) de una solución de NaOCl. También se probó el re-uso de los recipientes transparentes no estériles y de fuentes alternativas de agua para el medio, pero esto disminuyó el buen comportamiento del crecimiento de la plántula. También se investigó la comparación de una cámara de crecimiento controlada con las condiciones ambientales de laboratorio. El crecimiento de los microorganismos fue significativamente menor en la cámara de crecimiento controlado (5 %) al compararlo con las condiciones no controladas (26–36 %).



Non-sterile clear deli containers were generously donated by M. Olson (Placon, Madison WI). The active chlorine level in tap water was kindly provided by City of Madison Water Utilities (Madison, WI). We thank N. Keuler (University of Wisconsin-Madison) for statistical advice and the following University of Wisconsin undergraduate student hourlies: E. Hutchins, E. Schmid, J. Wochos, L. Jenison, M. Moritz and R. Shefchek (University of Wisconsin) for their dedication to this project.

Supplementary material

12230_2014_9423_MOESM1_ESM.docx (67 kb)
ESM 1 (DOCX 67 kb)


  1. Ahloowalia, B.S., and J. Prakash. 2002. Physical components of tissue culture technology, low cost options for tissue culture technology in developing countries. In: Proceedings of a technical meeting organized by the joint FAO/IAEA division of nuclear techniques in food and agriculture. Vienna, Austria 26–30 August. Printed by IAEA in Austria.Google Scholar
  2. Bhalla, P.L., and K. Sweeney. 1998. Micropropagation of Scaevola- australian native of ornamental horticulture. Australian Journal of Experimental Agriculture 38: 399–401.CrossRefGoogle Scholar
  3. Compton, M.E., and J.M. Koch. 2001. Influence of Plant Preservative Mixture (PPM) on adventitious organogenesis in melon, petunia, and tobacco. In Vitro Cell Development Biology 37: 259–261.CrossRefGoogle Scholar
  4. Frost, K.E., R.L. Groves, and A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97: 1268–1280.CrossRefGoogle Scholar
  5. George, M.W., and R.R. Tripepi. 2001. Plant Preservative Mixture can affect shoot regeneration from leaf explants of Chrysanthemum, European birch, and Rhododendron. Hort Science 36: 768–769.Google Scholar
  6. Guenthner, J.F., A.O. Charkowski, R. Genger, and G. Greenway. 2014. Varietal differences in minituber production costs. American Journal of Potato Research 91: 376–379.CrossRefGoogle Scholar
  7. Haberlach, G.T., B.A. Cohen, N.A. Reichert, M.A. Baer, and L.E. Towill. 1985. Isolation, culture and regeneration of protoplasts from potato and several related Solanum species. Plant Science 39: 67–74.CrossRefGoogle Scholar
  8. Jackson, M.B. 2003. Aeration stress in plant tissue cultures. Bulgarian Journal of Plant Physiology Special Issue: 96–109.Google Scholar
  9. Kancherla, S.L., and P.L. Bhalla. 2001. In vitro propagation of pandoreas. Hort Science 36: 348–350.Google Scholar
  10. Kohmura, H., T. Yanagawa, and M. Tanaka. 1999. An efficient micropropagation system using disinfectant incorporated medium and film culture vessel for in vitro plant regeneration of asparagus. Acta Horticulturae 479: 373–380.CrossRefGoogle Scholar
  11. Lai, C., H. Lin, S.M. Nalawade, W. Fang, and H. Tsay. 2005. Hyperhydricity in shoot cultures of Scrophularia yoshimurae can be effectively reduced by ventilation of culture vessels. Journal of Plant Physiology 162: 355–361.CrossRefPubMedGoogle Scholar
  12. Lizarraga, R., P. Tovar, U. Jayasinghe, and J. Dodds. 1986. Tissue culture for elimination of pathogens. Specialized Technology Document 3. International Potato Center, Lima, Peru. 21 pages.Google Scholar
  13. Luna, C., M. Collavino, L. Mroginski, and P. Sansberro. 2008. Indentification and control of bacterial contaminants from Ilex dumosa nodal segments culture in a temporal immersion bioreactor system using 16S rDNA analysis.  Plant Cell Tissue Organ 95:13–19.Google Scholar
  14. Luna, C., R. Acevedo, M. Collavino, A. González, L. Mroginski, and P. Sansberro. 2013. Endophytic bacteria from Ilex paraguariensis shoot cultures: localization, characterization, and response to isothiazolone biocides. In Vitro Cell Development Biology 49: 326–332.CrossRefGoogle Scholar
  15. Matsumoto, K., M.C.F. Coelho, D.C. Monte, and J.B. Teixeira. 2009. Sterilization of non-autoclavable vessels and culture media by sodium hypochlorite for in vitro culture. Acta Horticulturae 839: 329–335.CrossRefGoogle Scholar
  16. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plant 15: 473–497.CrossRefGoogle Scholar
  17. Park, S.W., J.H. Jeon, H.S. Kim, Y.M. Park, C. Aswath, and H. Joung. 2004. Effect of sealed and vented gaseous microenvironments on the hyperhydricity of potato shoots in vitro. Short Communication. Scientia Horticulturae 99: 199–205.CrossRefGoogle Scholar
  18. Paul, A.L., C. Semer, T. Kucharek, and R. Ferl. 2001. The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic Arabidopsis plants for a space shuttle flight experiment. Applied Microbiology Biotechnology 55: 480–485.CrossRefPubMedGoogle Scholar
  19. Peters, J.A. 2005. Potencial e demanda para a producão de plantas de alta qualidade genética e sanitária. Horticultura Brasileira 23(Suppl): 668.Google Scholar
  20. Rihan, H.Z., M. Al-Issawi, F. Al-swedi, and M.P. Fuller. 2012. The effect of using PPM (plant preservative mixture) on the development of cauliflower microshoots and the quality of artificial see produced. Scientia Horticulturae 141: 47–52.CrossRefGoogle Scholar
  21. Rowntree, J.K. 2006. Development of novel methods for the initiation of in vitro bryophyte cultures for conservation. Plant Cell Tissue Organ Culture 87: 191–201.CrossRefGoogle Scholar
  22. Sale, A. 2012. 3M Micropore Tape. Home Tissue Culture Group Copyright, No. 6 June. Accessed 24 May 2013.
  23. Sawant, R.A., and P.N. Tawar. 2011. Use of sodium hypochlorite as media sterilant in sugarcane micropropagation at commercial scale. Sugar Tech 14: 364–369.Google Scholar
  24. Teixeira, S.L., R.T.S. de Souza, and T.M. Teixeira. 2005. Microwave oven sterilization of plant culture medium. Ceres 52: 449–507.Google Scholar
  25. Tisserat, B., D. Jones, and P. Gallatta. 1992. Microwave sterilization of plant tissue culture media. Hort Science 27: 358–361.Google Scholar
  26. Yanagawa, T., M. Nagai, T. Ogino, and R. Maeguchi. 1995. Application of disinfectants to orchids seeds, plantlets and media as a means to prevent in vitro contamination. Lindleyana 10: 33–36.Google Scholar
  27. Yanagawa, T., R. Tanaka, and R. Funai. 2007. Simple micropropagation of ornamentals by direct application of chlorine disinfectants without equipment. Acta Horticulturae 764: 289–298.CrossRefGoogle Scholar
  28. Youssef, E.M.A., and G.A. Amin. 2001. Microwave sterilization of tissue culture media. Acta Horticulturae 506: 513–516.CrossRefGoogle Scholar
  29. Zobayed, S.M.A. 2006. Aeration in plant tissue culture. In Plant tissue culture engineering, ed. Gupta S. Dutta and Y. Ibaraki, 313–327. The Netherlands: Springer.Google Scholar

Copyright information

© The Potato Association of America 2014

Authors and Affiliations

  • Brooke N. Weber
    • 1
    Email author
  • R. Andrews Witherell
    • 1
  • Amy O. Charkowski
    • 1
  1. 1.Wisconsin Seed Potato Certification Program Tissue Culture Laboratory Department of Plant PathologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations