American Journal of Potato Research

, Volume 92, Issue 1, pp 62–70 | Cite as

Influence of Location, Year, Potato Rotation, and Chemical Seed Treatment on Incidence and Severity of Silver Scurf on Progeny Tubers

  • Jeffrey S. Miller
  • Philip B. Hamm
  • Jeremiah K. S. Dung
  • Brad D. Geary
  • Steven R. James
  • Dennis A. Johnson
  • Kenneth Rykbost
Article

Abstract

A three-year study was conducted in 1999, 2001, and 2002 to examine the influence of seed-borne inoculum and fludioxonil+mancozeb seed treatment on silver scurf (caused by Helminthosporium solani) development on progeny tubers at six locations under different potato rotations in the semi-arid U.S. Pacific Northwest. Disease-free pre-nuclear seed and diseased generation 3 seed was either treated or not treated with fludioxonil plus mancozeb, planted, and progeny tubers were harvested and then evaluated for silver scurf incidence and severity. Experiments were conducted in the southern Columbia Basin (Oregon), northern Columbia Basin (Washington), central Oregon, southern Oregon, western Idaho, and eastern Idaho under short (<3 years), normal (3–5 years), and long (>5 years) potato rotations over the three years for a total of 19 location-year-rotation combinations. Significant differences were observed among years and locations with disease incidence being highest in central Oregon. Progeny tubers from untreated generation 3 seed had significantly higher silver scurf incidence (18.4 %) and severity (1.3) compared to untreated progeny tubers from pre-nuclear seed (1.2 % and 0.04 for incidence and severity, respectively). Seed treatment with fludioxonil+mancozeb reduced incidence (3.8 %) and severity (0.2) significantly compared to the untreated control (15.8 % and 1.1 for incidence and severity, respectively). Significant (P < 0.0001) interactions between treatments and location-year-rotation were observed and additive main effects multiplicative interaction analysis discriminated those with high incidence, severity, and variability. These data indicate that seed, not soil, is the primary source of progeny tuber infection in the field in the Pacific Northwest. For long term storage, purchase of clean seed is an essential component for managing silver scurf.

Keywords

Helminthosporium solani Additive main effects multiplicative interaction (AMMI) 

Resumen

Se desarrolló un estudio de tres años en 1999, 2001 y 2002, para examinar la influencia de inóculo en la semilla y el tratamiento a la semilla con fludioxonil+mancozeb sobre el desarrollo de la mancha plateada (causada por Helminthosporium solani) en los tubérculos de la progenie en seis localidades bajo diferentes rotaciones de papa en el semiárido pacífico noroccidental de EUA. A semillas de calidad pre-nuclear libres de enfermedades y a semillas de tercera generación enfermas se les trató o no con fludioxonil más mancozeb, se plantaron, y los tubérculos resultantes se cosecharon y se evaluaron para la incidencia y severidad de la mancha plateada. Los experimentos se desarrollaron en la rivera sureña del Columbia (Oregon), en la norteña (Washington), en el centro de Oregon, y en el poniente y oriente de Idaho, bajo rotaciones cortas (<3 años), normales (3–5 años) y largas (>5 años) de papa a lo largo de los tres años, para un total de 19 combinaciones localidad-año-rotación. Se observaron diferencias significativas entre años y entre localidades con la más alta incidencia de la enfermedad en el centro de Oregon. Los tubérculos de progenie de la semilla de la tercera generación no tratada tenia significativamente más alta incidencia de la mancha plateada (18.4 %) y severidad (1.3) comparada con los tubérculos resultantes de semilla pre-nuclear no tratada (1.2 % y 0.04 para incidencia y severidad, respectivamente). El tratamiento a la semilla con fludioxonil+mancozeb redujo la incidencia (3.8 %) y la severidad (0.2) significativamente en comparación con el testigo no tratado (15.8 % y 1.1 para incidencia y severidad, respectivamente). Se observaron interacciones significativas entre tratamientos (P < 0.0001) y localidad-año-rotación, y el análisis de la interacción multiplicativa de los efectos principales aditivos discriminó a aquellos de alta incidencia, severidad y variabilidad. Estos datos indican que la semilla, no el suelo, es la fuente primaria de la infección del tubérculo de progenie en el campo en el pacífico noroccidental. Para almacenamiento a largo plazo, la compra de semilla limpia es un componente esencial para el manejo de la mancha plateada.

Notes

Acknowledgments

The authors would like to thank Ann Schneider for technical support in completing this work. The assistance of William J. Price and Bahman Shafii is appreciated. Support by the potato commissions in Oregon, Washington and Idaho is also acknowledged as well as the many growers who provided field test sites throughout the region.

References

  1. Bain, P.S., V.S. Bisht, and D.A. Benard. 1996. Soil survival and thiabendazole sensitivity of Helminthosporium solani isolates from Alberta, Canada. Potato Research 39: 23–30.CrossRefGoogle Scholar
  2. Cayley, G.R., G.A. Hide, P.J. Read, and Y. Dunne. 1983. Treatment of potato seed and ware tubers with imazalil and thiabendazole for control of silver scurf and other storage diseases. Potato Research 26: 163–173.CrossRefGoogle Scholar
  3. Dashwood, E.P., R.A. Fox, and D.A. Perry. 1992. Effect of inoculum source on root and tuber infection by potato blemish disease fungi. Plant Pathology 41: 215–223.CrossRefGoogle Scholar
  4. Denner, F.D.N., C.P. Millard, and D.P. Weingartner. 1998. The effect of seed-and soilbourne inoculum of Colletotrichum coccodes on the incidence of black dot on potatoes. Potato Research 41: 51–56.CrossRefGoogle Scholar
  5. Firman, D.M., and E.J. Allen. 1995. Transmission of Helminthosporium solani from potato seed tubers and effects of soil conditions, seed inoculum and seed physiology on silver scurf disease. Journal of Agricultural Science 124: 219–234.CrossRefGoogle Scholar
  6. Forbes, G., M. Chacón, H. Kirk, M. Huarte, M. Van Damme, S. Distel, G. Mackay, H. Stewart, R. Lowe, J. Duncan, H. Mayton, W. Fry, D. Andrivon, D. Ellissèche, R. Pellé, H. Platt, G. MacKenzie, T. Tarn, L. Colon, D. Budding, H. Lozoya-Saldaña, A. Hernandez-Vilchis, and S. Capezio. 2005. Stability of resistance to Phytophthora infestans in potato: An international evaluation. Plant Pathology 54: 364–372.CrossRefGoogle Scholar
  7. Frazier, M.J., K.K. Shetty, G.E. Kleinkopf, and P. Nolte. 1998. Management of silver scurf (Helminthosporium solani) with fungicide seed treatments and storage practices. American Journal of Potato Research 75: 129–135.CrossRefGoogle Scholar
  8. Geary, B., and D.A. Johnson. 2006. Relationship between silver scurf levels on seed and progeny tubers from successive generations of potato seed. American Journal of Potato Research 83: 447–453.CrossRefGoogle Scholar
  9. Geary, B., S. James, K.A. Rykbost, D.A. Johnson, and P.B. Hamm. 2007. Potato silver scurf affected by tuber seed treatments and locations, and occurrence of fungicide resistant isolates of Helminthosporium solani. Plant Disease 91: 315–320.CrossRefGoogle Scholar
  10. Golob, H.F. 1968. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73–115.CrossRefGoogle Scholar
  11. Goth, R.W., and R.E. Webb. 1983. Maintenance and growth of Helminthosporium solani. American Potato Journal 281–287.Google Scholar
  12. Hervieux, V., R. Chabot, J. Arul, and R.J. Tweddell. 2001. Evaluation of different fungicides applied as seed tuber treatments for the control of potato silver scurf. Phytoprotection 82: 41–48.CrossRefGoogle Scholar
  13. Hide, G.A., and S.M. Hall. 1993. Development of resistance to thiabendazole in Helminthosporium solani (silver scurf) as a result of potato seed tuber treatment. Plant Pathology 42: 707–714.CrossRefGoogle Scholar
  14. Hunger, R.M., and G.A. McIntyre. 1979. Occurrence, development, and losses associated with silver scurf and black dot on Colorado potatoes. American Potato Journal 56: 289–306.CrossRefGoogle Scholar
  15. Jellis, G.J., and G.S. Taylor. 1977. The development of silver scurf (Helminthosporium solani) disease of potato. Annals of Applied Biology 86: 19–28.CrossRefGoogle Scholar
  16. Kawchuk, L.M., J.D. Holley, D.R. Lynch, and R.M. Clear. 1994. Resistance to thiabendazole and thiophanate-methyl in Canadian isolates of Fusarium sambucimum and Helminthosporium solani. American Potato Journal 71: 185–192.CrossRefGoogle Scholar
  17. Lennard, J.H. 1980. Factors affecting the development of silver scurf (Helminthosporium solani) on potato tubers. Plant Pathology 29: 87–92.CrossRefGoogle Scholar
  18. Mérida, C.L., and R. Loria. 1994. Effects of potato cultivar and time of harvest on the severity of silver scurf. Plant Disease 78: 146–149.CrossRefGoogle Scholar
  19. Mooi, J.C. 1959. A skin necrosis occurring on potato tubers affected by black dot (Colletotrichum atramentarium) after exposure to low temperatures. European Potato Journal 2: 58–68.CrossRefGoogle Scholar
  20. Powelson, M.L., and D.A. Inglis. 1999. Foliar fungicides as protective seed piece treatments for management of late blight of potatoes. Plant Disease 83: 265–268.CrossRefGoogle Scholar
  21. Read, P.J., and G.A. Hide. 1984. Effects of silver scurf (Helminthosporium solani) on seed potatoes. Potato Research 27: 145–154.CrossRefGoogle Scholar
  22. Rodriguez, D.A., G.A. Secor, N.C. Gudmestad, and L.J. Franci. 1996. Sporulation of Helminthosporium solani and infection of potato tubers in seed and commercial storages. Plant Disease 80: 1063–1070.CrossRefGoogle Scholar
  23. Snijders, C., and F. Van Eeuwijk. 1991. Genotype x strain interactions for resistance to Fusarium head blight caused by Fusarium culmorum in winter wheat. Theoretical and Applied Genetics 81: 239–244.CrossRefPubMedGoogle Scholar
  24. Tsror, L., and I. Peretz-Alon. 2004. Control of silver scurf on poato by dusting or spraying seed tubers with fungicides before planting. American Journal of Potato Research 81: 291–294.CrossRefGoogle Scholar
  25. Willyerd, K.T., C. Li, L.V. Madden, C.A. Bradley, G.C. Bergstrom, L.E. Sweets, M. McMullen, J.K. Ransom, A. Grybauskas, L. Osborne, S.N. Wegulo, D.E. Hershman, K. Wise, W.W. Bockus, D. Groth, R. Dill-Macky, E. Milus, P.D. Esker, K.D. Waxman, E.A. Adee, S.E. Ebelhar, B.G. Young, and P.A. Paul. 2011. Efficacy and stability of integrating fungicide and cultivar resistance to manage Fusarium head blight and deoxynivalenol in wheat. Plant Disease 96: 957–967.CrossRefGoogle Scholar
  26. Yau, S.K. 1995. Regression and AMMI analyses of genotype-environment interactions: An empirical comparison. Agronomy Journal 87: 121–126.CrossRefGoogle Scholar
  27. Zimmerman-Gries, S., and E.C. Blodgett. 1974. Incidence and tuber transmission of silver-scurf on potatoes in Israel. Potato Research 17: 97–112.CrossRefGoogle Scholar
  28. Zobel, R.W., M.J. Wright, and H.G. Gauch. 1988. Statistical analysis of a yield trial. Agronomy Journal 80: 388–393.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2014

Authors and Affiliations

  • Jeffrey S. Miller
    • 1
  • Philip B. Hamm
    • 2
  • Jeremiah K. S. Dung
    • 3
  • Brad D. Geary
    • 4
  • Steven R. James
    • 5
  • Dennis A. Johnson
    • 6
  • Kenneth Rykbost
    • 7
  1. 1.Miller Research LLCRupertUSA
  2. 2.Department. of Botany and Plant PathologyOregon State University, Hermiston Ag. Research & Extension CenterHermistonUSA
  3. 3.Department. of Botany and Plant PathologyOregon State University, Central Oregon Agricultural Research CenterMadrasUSA
  4. 4.Brigham Young UniversityProvoUSA
  5. 5.Central Oregon Ag. Research CenterOregon State UniversityMadrasUSA
  6. 6.Washington State UnivPullmanUSA
  7. 7.Formerly Oregon State UniversityHoultonUSA

Personalised recommendations