Advertisement

American Journal of Potato Research

, Volume 91, Issue 4, pp 363–367 | Cite as

Resistance of Selected Potato Genotypes to the Potato Psyllid (Hemiptera: Triozidae)

  • John Diaz-MontanoEmail author
  • Beatriz G. Vindiola
  • Nichole Drew
  • Richard G. Novy
  • J. Creighton MillerJr
  • John T. Trumble
Article

Abstract

The characterization of resistance of selected potato, Solanum tuberosum L., breeding clones to the potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) was investigated. Antixenosis was assessed in choice tests in which a single plant of each genotype was placed inside a rearing cage, where 60 female psyllid adults were released and the number of adults and eggs on each genotype was counted 24 h later. Antibiosis was evaluated in no-choice tests in which adults (five males and five females) were confined in a cage fixed to the upper side of leaves. After 4 h of exposure, adults were removed and the number of eggs counted. The developmental time and survival of offspring were recorded until all insects became adults. All the resistant genotypes showed strong antibiotic effects to B. cockerelli. These results show promise for incorporation into an IPM program against B. cockerelli.

Keywords

Bactericera cockerelli Solanum tuberosum Antibiosis Antixenosis 

Resumen

Se investigó la caracterización de la resistencia de clones selectos de papa, Solanum tuberosum L., al psílido de la papa Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Se evaluó la antixenosis en pruebas de selección en las cuales se colocaron plantas individuales de cada genotipo dentro de una jaula de crecimiento, donde se liberaron 60 psílidos adultos hembras y se contó el número de adultos y huevos en cada genotipo 24 h después. Se evaluó la antibiosis en pruebas de no-selección en las cuales los adultos (cinco machos y cinco hembras) se confinaron en una jaula fija en la parte superior de las hojas. Después de cuatro horas de exposición, se retiró a los adultos y se contó el número de huevos. Se registró el tiempo de desarrollo y sobrevivencia de la progenie hasta que todos los insectos se hicieron adultos. Todos los genotipos resistentes mostraron fuertes efectos antibióticos a B. cockerelli. Estos resultados son prometedores para la incorporación a un programa de manejo integral (IPM) contra B. cockerelli.

Notes

Acknowledgments

We thank Bill Carson, Greg Kund, Deborah De La Riva, Kristen Hladun, Christina Mogren, Sammuel Gilbert, Khoa Tran (Chris), Kristine Gilbert and Lindsay Johnson for helping in different aspects of this study. This research was partially funded by a USDA SCRI grant (2009-34381-20036), a USDA RAMP grant (2009-51101-05892) and the California Potato Board. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture, Texas A & M University or the University of California-Riverside. USDA is an equal opportunity provider and employer.

References

  1. Al-Jabr, A.M., and S.C. Whitney. 2007. Trapping tomato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psyllidae), in greenhouses. Southwestern Entomologist 32: 25–30.CrossRefGoogle Scholar
  2. Butler, C.D., and J.T. Trumble. 2012. The potato psyllid Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Reviews 5: 87–111.CrossRefGoogle Scholar
  3. Butler, C.D., B. Gonzalez, K.L. Manjunath, R.F. Lee, R.G. Novy, J.C. Miller, and J.T. Trumble. 2011. Behavioral responses of adult potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), to potato germplasm and transmission of Candidatus Liberibacter psyllaurous. Crop Protection 30: 1233–1238.CrossRefGoogle Scholar
  4. Diaz-Montano, J., and J. Trumble. 2013. Behavioral responses of the potato psyllid (Hemiptera: Triozidae) to volatiles from dimethyl disulfide and plant essential oils. Journal of Insect Behavior 26: 336–351.CrossRefGoogle Scholar
  5. Gharalari, A.H., C. Nansen, D.S. Lawson, J. Gilley, J.E. Munyaneza, and K. Vaughn. 2009. Knockdown, mortality, repellency, and residual effects of insecticides for control of Bactericera cockerelli adult (Hemiptera: Psyllidae). Journal of Economic Entomology 102: 1032–1038.CrossRefPubMedGoogle Scholar
  6. Goolsby, J.A., J. Adamczyk, B. Bextine, D. Lin, J.E. Munyaneza, and G. Bester. 2007. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science 59: 85–94.Google Scholar
  7. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new Huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, is vectored by the psyllid Bactericerca cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Kennedy, G.G. 2008. Integration of insect-resistant genetically modified crops within IPM programs. In Integration of insect-resistant genetically modified crops within IPM programs, ed. J. Romeis, A.M. Shelton, and G.G. Kennedy, 1–26. Amsterdam: Springer.CrossRefGoogle Scholar
  9. Liefting, L.W., X.C. Perez-Egusquiza, and G.R.G. Clover. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  10. Liefting, L.W., P.W. Southerland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009. A new “Candidatus Liberibacter” species associated with diseases of solanaceous crops. Plant Disease 93: 208–214.CrossRefGoogle Scholar
  11. Liu, D.G., and J.T. Trumble. 2005. Interactions of plant resistance and insecticides on the development and survival of Bactericerca cockerelli [Sulc] (Homoptera: Psyllidae). Crop Protection 24: 111–117.CrossRefGoogle Scholar
  12. Liu, D.G., and J.T. Trumble. 2006. Ovipositional preferences, damage thresholds, and detection of the tomato-potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) on selected tomato accessions. Bulletin of Entomological Research 96: 197–204.CrossRefPubMedGoogle Scholar
  13. Liu, D.G., and J.T. Trumble. 2007. Comparative fitness of invasive and native populations of the potato psyllid Bactericerca cockerelli. Entomologia Experimentalis et Applicata 123: 35–42.CrossRefGoogle Scholar
  14. Matkin, O.A., and P.A. Chandler. 1957. The U.C.-type soil mixes. In The U.C. system for producing healthy container-grown plants through the use of clean soil, clean stock and sanitation, ed. K. Baker, 68–85. Berkeley: California Agricultural Experiment Station Manual 23.Google Scholar
  15. Munyaneza, J.E. 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist 35: 471–477.CrossRefGoogle Scholar
  16. Munyaneza, J.E., J.M. Crosslin, and E.J. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in Southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.PubMedGoogle Scholar
  17. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and E.J. Upton. 2007b. Further evidence that Zebra Chip potato disease in the Lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  18. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Sengoda. 2008. Impact of different potato psyllid populations on Zebra Chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.Google Scholar
  19. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, G. de la Rosa-Lozano, and A. Sanchez. 2009. First report of Candidatus Liberibacter psyllaurous in potato tubers with Zebra Chip disease in Mexico. Plant Disease 93: 552.CrossRefGoogle Scholar
  20. Novy, R.G., and J.P. Helgeson. 1994. Somatic hybrids between Solanum etuberosum and diploid, tuber bearing Solanum clones. Theoretical and Applied Genetics 89: 775–782.PubMedGoogle Scholar
  21. Panda, N., and G.S. Khush. 1995. Host plant resistance to insects. Wallingford: CAB International.Google Scholar
  22. SAS Institute. 2003. SAS/STAT user’s guide, version 9.1.3. Cary: SAS Institute.Google Scholar
  23. Smith, C.M. 2005. Plant resistance to arthropods: molecular and conventional approaches. Amsterdam: Springer.CrossRefGoogle Scholar
  24. Teulon, D.A.J., P.J. Workman, K.L. Thomas, and M.C. Nielsen. 2009. Bactericera cockerelli: incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection 62: 136–144.Google Scholar

Copyright information

© Potato Association of America 2013

Authors and Affiliations

  • John Diaz-Montano
    • 1
    • 2
    Email author
  • Beatriz G. Vindiola
    • 1
  • Nichole Drew
    • 1
  • Richard G. Novy
    • 3
  • J. Creighton MillerJr
    • 4
  • John T. Trumble
    • 1
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Stored Product Insect Research Unit, USDA, Agricultural Research Service, Center for Grain and Animal Health ResearchManhattanUSA
  3. 3.Small Grains and Potato Germplasm Research Unit, USDA, Agricultural Research ServiceAberdeenUSA
  4. 4.Department of Horticultural SciencesTexas A & M UniversityCollege StationUSA

Personalised recommendations