Advertisement

American Journal of Potato Research

, Volume 89, Issue 5, pp 329–350 | Cite as

Zebra Chip Disease of Potato: Biology, Epidemiology, and Management

  • Joseph E. MunyanezaEmail author
INVITED REVIEW

Abstract

Zebra chip (ZC), a new and economically important disease of potato (Solanum tuberosum L.), has been documented to occur in commercial potato fields in the United States, Mexico, Central America, and New Zealand. This disease has caused millions of dollars in losses to the potato industry. Whole crops might be rejected because of ZC, often leading to abandonment of entire fields. Plant growth and yield are severely affected by the disease. Additionally, chips or fries processed from ZC-infected tubers exhibit dark stripes that become markedly more visible with frying, and hence are commercially unacceptable. The disease causes serious losses to the fresh market, tablestock and export potato industry as well. ZC-infected tubers usually do not sprout and if they do, produce hair sprouts or weak plants. Finally, there are indications that ZC symptoms might develop in tubers during storage. ZC has been associated with a previously undescribed species of liberibacter, tentatively named “Candidatus Liberibacter solanacearum”, also known as “Ca. L. psyllaurous”. The bacterium is transmitted to potato by the potato psyllid, Bactericera cockerelli (Šulc). All commercial potato cultivars appear to be susceptible to ZC, and management tactics targeted against the potato psyllid are currently the only means to effectively manage the disease. Furthermore, there are concerns about quarantine and trade issues in psyllid-affected regions because some countries may require that shipments of potatoes from certain growing regions be tested for the disease before the shipments are allowed entry. ZC history, geographic distribution, biology, epidemiology, and management are discussed herein.

Keywords

Potato psyllid Bactericera cockerelli Liberibacter Potato Zebra chip Disease biology Disease management 

Resumen

Se ha documentado que Zebra chip (ZC), una enfermedad nueva y económicamente importante de la papa (Solanum tuberosum L.), se presenta en los campos comerciales de papa en los Estados Unidos, México, América Central y Nueva Zelanda. Esta enfermedad ha causado millones de dólares en pérdidas a la industria de la papa. Se pudieran rechazar cultivos completos debido a ZC, que conducen a menudo al abandono total de los campos. Se afecta severamente el crecimiento y el rendimiento de la planta por la enfermedad. Además, las hojuelas o papas fritas procesadas de tubérculos infectados con ZC exhiben líneas oscuras que se vuelven marcadamente más visibles con el freído, y por lo tanto son inaceptables comercialmente. La enfermedad causa pérdidas serias al mercado fresco, al domestico y a la industria de la exportación también. Los tubérculos infectados con ZC generalmente no brotan, y si lo hacen, producen brotes ahilados y plantas débiles. Finalmente, hay indicaciones de que los síntomas de ZC pueden desarrollarse en los tubérculos durante el almacenamiento. Se ha asociado a la ZC con una especie previamente descrita de Liberibacter, tentativamente llamada “Candidatus Liberibacter solanacearum”, también conocida como “Ca. L. psyllaurous”. La bacteria se transmite a la papa por el psilido Bactericera cockerelli (Šulc). Todas las variedades comerciales de papa parecen ser susceptibles a ZC, y las tácticas de manejo dirigidas contra el psilido de la papa son a la fecha los únicos medios para manejar la enfermedad efectivamente. Aún mas, hay preocupación acerca de cuarentena y temas de comercio en regiones afectadas por el psilido, debido a que algunos países pudieran requerir que los embarques de papas de ciertas regiones de cultivo fueran analizados para la enfermedad antes de permitir la entrada de los envíos. De aquí que se discute la historia de ZC, la distribución geográfica, biología, epidemiología y el manejo.

Notes

Acknowledgments

I am grateful to anonymous reviewers who made suggestions to improve an earlier version of this paper. Financial support for this work was partially provided by Frito Lay, Inc., USDA-ARS State Partnership Potato Research Program, Texas Department of Agriculture, USDA-RAMP (Project # 2009-51101-05892) and USDA-SCRI (Project #2009-51181-20176). The use of trade, firm, or corporation names in this publication is for information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. USDA is an equal opportunity provider and employer.

References

  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Liefting, and G.R.G. Clover. 2009. First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip disease-infected potato plants in the United States. Plant Disease 93: 108.CrossRefGoogle Scholar
  2. Abdullah, N.M.M. 2008. Life history of the potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) in controlled environment agriculture in Arizona. African Journal of Agricultural Research 3: 60–67.Google Scholar
  3. Abernathy, R.L. 1991. Investigation into the nature of the potato psyllid toxin. M.S. Thesis, Colorado State University, Fort Collins, CO.Google Scholar
  4. Alfaro-Fernández, A., M.C. Cebrián, F.J. Villaescusa, A. Hermoso de Mendoza, J.C. Ferrándiz, S. Sanjuán, and M.I. Font. 2012a. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in mainland Spain. Plant Disease 96: 582.CrossRefGoogle Scholar
  5. Alfaro-Fernández, A., F. Siverio, M.C. Cebrián, F.J. Villaescusa, and M.I. Font. 2012b. ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Disease 96: 581.CrossRefGoogle Scholar
  6. Al-Jabar, A.M., and W.S. Cranshaw. 2007. Trapping tomato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psyllidae), in greenhouses. Southwestern Entomologist 32: 25–30.CrossRefGoogle Scholar
  7. Al-Jabr, A.M. 1999. Integrated pest management of tomato/potato psyllid, Paratrioza cockerelli (Sulc) (Homoptera: Psyllidae) with emphasis on its importance in greenhouse grown tomatoes. Ph.D. Dissertation, Colorado State University, Fort Collins, CO.Google Scholar
  8. Alvarado, V.Y., D. Odokonyero, O. Duncan, T.E. Mirkov, and H.B. Scholthof. 2012. Molecular and physiological properties associated with zebra chip complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors. PloS One 7(5): e37345. doi: 10.1371/journal.pone.0037345.PubMedCrossRefGoogle Scholar
  9. Arslan, A., P.M. Bessey, K. Matasuda, and N.F. Oebker. 1985. Physiological effects of psyllid (Paratrioza cockerelli) on potato. American Journal of Potato Research 62: 9–22.CrossRefGoogle Scholar
  10. Berry, N.A., M.K. Walker, and R.C. Butler. 2009. Laboratory studies to determine the efficacy of selected insecticides on tomato/potato psyllid. New Zealand Plant Protection 62: 145–151.Google Scholar
  11. Berry, N., S. Thompson, N. Taylor, P. Wright, F. Shah, M. Walker, S. Beard, N. Jorgensen, R. Butler, S. Thompson, I. Scott, and A.R. Pitman. 2011. The impact of Ca. Liberibacter infected seed tubers on potato production in New Zealand, pp. 178–182. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A Rashed, and C.M. Rush. Dallas, TX (November 6–9, 2011).Google Scholar
  12. Binkley, A.M. 1929. Transmission studies with the new psyllid yellows disease of solanaceous plants. Science 70: 615.PubMedCrossRefGoogle Scholar
  13. Bové, J.M. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88: 7–37.Google Scholar
  14. Brown, J.K., M. Rehman, D. Rogan, R.R. Martin, and A.M. Idris. 2010. First report of “Candidatus Liberibacter psylaurous” (syn. “Ca. L. solanacearum”) associated with the ‘tomato vein-greening’ and ‘tomato psyllid yellows’ diseases in commercial greenhouse in Arizona. Plant Disease 94: 376.CrossRefGoogle Scholar
  15. Buchman, J.L., B.E. Heilman, and J.E. Munyaneza. 2011a. Effects of Bactericera cockerelli (Hemiptera: Triozidae) density on zebra chip potato disease incidence, potato yield, and tuber processing quality. Journal of Economic Entomology 104: 1783–1792.PubMedCrossRefGoogle Scholar
  16. Buchman, J.L., V.G. Sengoda, and J.E. Munyaneza. 2011b. Vector transmission efficiency of liberibacter by Bactericera cockerelli (Hemiptera: Triozidae) in zebra chip potato disease: effects of psyllid life stage and inoculation access period. Journal of Economic Entomology 104: 1486–1495.PubMedCrossRefGoogle Scholar
  17. Buchman, J.L., T.W. Fisher, V.G. Sengoda, and J.E. Munyaneza. 2012. Zebra chip progression: from inoculation of potato plants with liberibacter to development of disease symptoms in tubers. American Journal of Potato Research 89: 159–168.CrossRefGoogle Scholar
  18. Butler, C.D., and J.T. Trumble. 2012a. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Reviews 5: 87–111.Google Scholar
  19. Butler, C.D., and J.T. Trumble. 2012b. Spatial dispersion and binomial sequential sampling for the potato psyllid (Hemiptera: Triozidae) on potato. Pest Management Science 68: 865–869.PubMedCrossRefGoogle Scholar
  20. Butler, C.D., R.G. Novy, J.C. Miller, and J.T. Trumble. 2010. Alternative strategies: plant resistance and biological control, pp. 69–73. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  21. Butler, C.D., F.R. Byrne, M.L. Keremane, R.F. Lee, and J.T. Trumble. 2011a. Effects of insecticides on behavior of adult Bactericera cockerelli (Hemiptera: Triozidae) and transmission of Candidatus Liberibacter psyllaurous. Journal of Economic Entomology 104: 586–594.PubMedCrossRefGoogle Scholar
  22. Butler, C.D., B. Gonzalez, K.L. Manjunath, R.E. Lee, R.G. Novy, J.C. Miller, and J.T. Trumble. 2011b. Behavioral responses of adult potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), to potato germplasm and transmission of Candidatus Liberibacter psyllaurous. Crop Protection 30: 1233–1238.CrossRefGoogle Scholar
  23. Butler, C.D., G.P. Walker, and J.T. Trumble. 2012. Feeding disruption of potato psyllid, Bactericera cokerelli, by imidacloprid as measured by electrical penetration graphs. Entomologia Experimentalis et Applicata 142: 247–257.CrossRefGoogle Scholar
  24. Bynum, E., D.C. Henne, andC.M. Rush. 2010. Evaluation of spray applications for potato psyllid and ZC management, pp. 88–92. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  25. Cameron, P.J., M.R. Surrey, P.J. Wigley, J.A.D. Anderson, D.E. Hartnett, and A.R. Wallace. 2009. Seasonality of Bactericera cockerelli in potatoes (Solanum tubersom) in South Auckland, New Zealand. New Zealand Journal of Crop and Horticultural Science 37: 295–301.CrossRefGoogle Scholar
  26. Capinera, J.L. 2001. Handbook of vegetable pests. San Diego: Academic.Google Scholar
  27. Casteel, C.L., A.K. Hansen, L.L. Walling, and T.D. Paine. 2012. Manipulation of plant defense responses by the tomato psyllid (Bactericera cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PloS One 7(4): e35191. doi: 10.1371/journal.pone.0035191.PubMedCrossRefGoogle Scholar
  28. Cebrián, M.C., F.J. Villaescusa, A. Alfaro-Fernández, A. Hermoso de Mendoza, M.C. Cárdoba-Selleés, C. Jorda, J.C. Ferrándiz, S. Sanjuan, and M.I. Font. 2010. First report of Spiroplasma citri in carrot in Europe. Plant Disease 94: 1264.CrossRefGoogle Scholar
  29. Cicero, J.M., J.K. Brown, P.D. Roberts, and P.A. Stansly. 2009. The digestive system of Diaphorina citri and Bactericera cockerelli (Hemiptera: Psyllidae). Annals of the Entomological Society of America 102: 650–665.CrossRefGoogle Scholar
  30. CNAS. 2006. Economic impacts of zebra chip on the Texas potato industry. Center for North American Studies, http://cnas.tamu.edu/zebra%20chip%20impacts%20final.pdf.
  31. Compere, H. 1915. Paratrioza cockerelli (Sulc). Monthly Bulletin of California State Commission of Horticulture 4: 574.Google Scholar
  32. Compere, H. 1916. Notes on the tomato psylla. Monthly Bulletin of California State Commission of Horticulture 5: 189–191.Google Scholar
  33. Costa Rica-MAG. 2012. Costa Rica toma medidas ante presencia de plaga en frontera norte. Comunicado de Prensa CP-07-2012.Google Scholar
  34. Cranshaw, W.S. 1993. An annotated bibliography of potato/tomato psyllid, Paratrioza cockerelli (Sulc) (Homptera; Psyllidae). Colorado State University Agricultural Experiment Station Bulletin TB93-5.Google Scholar
  35. Cranshaw, W.S. 1994. The potato (tomato) psyllid, Paratrioza cockerelli (Sulc), as a pest of potatoes. In Advances in potato pest biology and management, ed. G.W. Zehnder, M.L. Powelson, R.K. Hansson, and K.V. Raman, 83–95. St. Paul, MN: APS Press.Google Scholar
  36. Cranshaw, W.S. 2001. Diseases caused by insect toxin: psyllid yellows, pp. 73–74. In Compendium of Potato Diseases (2nd Ed.), ed. W.R. Stevenson, R. Loria, G.D. Franc, and D.P. Weingartner. APS Press, St. Paul, MN.Google Scholar
  37. Crosslin, J.M., and G. Bester. 2009. First report of Candidatus Liberibacter psyllaurous in zebra chip symptomatic potatoes from California. Plant Disease 93: 551.CrossRefGoogle Scholar
  38. Crosslin, J.M., and J.E. Munyaneza. 2009. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.CrossRefGoogle Scholar
  39. Crosslin, J.M., J.E. Munyaneza, A.S. Jensen, and P.B. Hamm. 2005. Association of the beet leafhopper (Hemiptera: Cicadellidae) with a clover proliferation group phytoplasma in the Columbia Basin of Washington and Oregon. Journal of Economic Entomology 98: 279–283.PubMedCrossRefGoogle Scholar
  40. Crosslin, J.M., J.E. Munyaneza, J.K. Brown, and L.W. Liefting. 2010. Potato zebra chip disease: a phytopathological tale. Online. Plant Health Progress. doi: 10.1094/PHP-2010-0317-01-RV.
  41. Crosslin, J.M., J.A. Goolsby, and J.E. Munyaneza. 2011a. Liberibacter testing of 2011 psyllids and research update, pp. 17–21. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  42. Crosslin, J.M., H. Lin, and J.E. Munyaneza. 2011b. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwestern Entomologist 36: 125–135.CrossRefGoogle Scholar
  43. Crosslin, J.M., P.B. Hamm, J.E. Eggers, S.I. Rondon, V.G. Sengoda, and J.E. Munyaneza. 2012a. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington State. Plant Disease 96: 452.CrossRefGoogle Scholar
  44. Crosslin, J.M., N. Olsen, and P. Nolte. 2012b. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Idaho. Plant Disease 96: 453.CrossRefGoogle Scholar
  45. Curtis, L.S., P. Tantravahi, and T.E. Mirkov. 2010. An evaluation of plant-derived antimicrobial and anti-insect genes on reducing zebra chip disease in transgenic potato, pp. 110–114. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh, and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  46. Daniels, L.B. 1954.The nature of the toxicogenic condition resulting from the feeding of the tomato psyllid Paratrioza cockerelli (Sulc). Ph.D. Dissertation, University of Minnesota.Google Scholar
  47. Diaz-Montano J., and J.T. Trumble. 2012. Behavioral responses of the potato psyllid (Hemiptera: Triozidae) to volatiles from Dimethyl Disulfide and plant essential oils. Journal of Insect Behavior. doi: 10.1007/s10905-012-9350-8.
  48. Ember, I., Z. Acs, J.E. Munyaneza, J.M. Crosslin, and M. Kolber. 2011. Survey and molecular detection of phytoplasmas associated with potato in Romania and Southern Russia. European Journal of Plant Pathology 130: 367–377.CrossRefGoogle Scholar
  49. EPPO. 2012. First report of ‘Candidatus Liberibacter solanacearum’ on carrots and celery in Spain, in association with Bactericera trigonica. EPPO Reporting Service – Pests and Diseases 6: 4–5.Google Scholar
  50. Espinoza, H.R. 2010. Facing the Bactericera cockerelli/Candidatus Liberibacter complex in Honduras, pp. 47–49. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh, and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  51. Essig, E.O. 1917. The tomato and laurel psyllids. Journal of Economic Entomology 10: 433–444.Google Scholar
  52. Eyer, J.R. 1937. Physiology of psyllid yellows of potatoes. Journal of Economic Entomology 30: 891–898.Google Scholar
  53. Eyer, J.R., and R.F. Crawford. 1933. Observations on the feeding habits of the potato psyllid (Paratrioza cockerelli Sulc.) and the pathological history of the “psyllid yellows” which it produces. Journal of Economic Entomology 26: 846–850.Google Scholar
  54. Ferguson, G., and L. Shipp. 2002. New pests in Ontario greenhouse vegetables. Working Group “International Control in Protected Crops, Temperate Climate”. Bulletin of the International Organization for Biological Control of Noxious Animals and Plants. West Palearctic Regional Section 25: 69–72.Google Scholar
  55. Font, I., P. Abad, M. Albiñana, A.I. Espino, E.L. Dally, R. Davis, and C. Jorda. 1999. Amarilleos y anrojecimientos en zanahoria: una enfermedad a diagnóstico. Boletín de Sanidad Vegetal 25: 405–415.Google Scholar
  56. French-Monar, R.D., F. Patto, J.M. Douglas, J.A. Abad, G. Schuster, W. Wallace, and T.A. Wheeler. 2010. First report of “Candidatus Liberibacter solanacearum” on field tomatoes in the United States. Plant Disease 94: 481.CrossRefGoogle Scholar
  57. Galviz, R., V. Hernandez, A. Sanchez, M. Barrera, G. Frias, and F. Durazo. 2010. Highlights on zebra chip Mexican experiences, pp. 42–46. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  58. Gao, F., J. Jifon, X. Yang, and T.-X. Liu. 2009. Zebra chip disease incidence on potato is influenced by timing of potato psyllid infestation, but not by the host plants on which they were reared. Insect Science 16: 399–408.CrossRefGoogle Scholar
  59. Gharalari, A.H., C. Nansen, D.S. Lawson, J. Gilley, J.E. Munyaneza, and K. Vaughn. 2009. Knockdown mortality, repellency, and residual effects of insecticides for control of adult Bactericera cockerelli (Hemiptera: Psyllidae). Journal of Economic Entomology 102: 1032–1038.PubMedCrossRefGoogle Scholar
  60. Gill, G. 2006. Tomato psyllid detected in New Zealand. Biosecurity New Zealand 69: 10–11.Google Scholar
  61. Goolsby, J.A., B. Bextine, J.E. Munyaneza, M. Sétamou, J. Adamczyk, and G. Bester. 2007a. Seasonal abundance of sharpshooters, leafhoppers, and psyllids associated with potatoes affected by zebra chip disorder. Subtropical Plant Science 59: 15–23.Google Scholar
  62. Goolsby, J.A., J. Adamczyk, B. Bextine, D. Lin, J.E. Munyaneza, and G. Bester. 2007b. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science 59: 85–94.Google Scholar
  63. Goolsby, J.A., J.J. Adamczyk, J.M. Crosslin, N.N. Troxclair, J.R. Anciso, G.G. Bester, J.D. Bradshaw, E.D. Bynum, L.A. Carpio, D.C. Henne, A. Joshi, J.E. Munyaneza, P. Porter, P.E. Sloderbeck, J.R. Supak, C.M. Rush, F.J. Willett, B.J. Zechmann, and B.A. Zens. 2011. Regional monitoring of potato psyllid populations and the associated pathogen, Ca. Liberibacter psyllaurous, pp. 12–16. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  64. Goolsby, J.A., J.J. Adamczyk, J.M. Crosslin, N.N. Troxclair, J.R. Anciso, G.G. Bester, J.D. Bradshaw, E.D. Bynum, L.A. Carpio, D.C. Henne, A. Joshi, J.E. Munyaneza, P. Porter, P.E. Sloderbeck, J.R. Supak, C.M. Rush, F.J. Willett, B.J. Zechmann, and B.A. Zens. 2012. Seasonal population dynamics of the potato psyllid (Hemiptera: Triozidae) and its associated pathogen “Candidatus Liberibacter solanacearum” in potatoes in the southern Great Plains of North America. Journal of Economic Entomology 105: 1268–1278.Google Scholar
  65. Gudmestad, N.C., and G.A. Secor. 2007. Zebra chip: a new disease of potato. Potato Eyes 19: 1–4.Google Scholar
  66. Guédot, C., D.R. Horton, and P.J. Landolt. 2010. Sex attraction in the potato psyllid Bactericera cockerelli (Hemiptera: Triozidae). Environmental Entomology 39: 1302–1308.PubMedCrossRefGoogle Scholar
  67. Guédot C., D.R. Horton, P.J. Landolt, J.E. Munyaneza, and J. Millar. 2011. Efforts to identify the sex pheromone of the potato psyllid, pp. 112–116. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  68. Guédot, C., D.R. Horton, and P.J. Landolt. 2012. Age at reproductive maturity and effect of age and time of day on sex attraction in the potato psyllid Bactericera cockerelli. Insect Science. doi: 10.1111/j.1744-7917.2011.01498.x.
  69. Guenthner, J., and G. Greenway. 2010. Zebra chip economics, pp. 93–95.In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh, and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  70. Guenthner, J., G. Greenway, and J. Goolsby. 2011. Zebra chip economics, pp. 168–172. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  71. Hail, D.A., S. Dowd, W.H. Hunter, and B. Bextine. 2010. Investigating the transcriptome of the potato psyllid (Bactericera cockerelli): toward an RNAi based management strategy, pp. 183–186. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  72. Hail, D., S.E. Dowd, and B. Bextine. 2012. Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) life stages. Environmental Entomology 41: 98–107.PubMedCrossRefGoogle Scholar
  73. Halbert, S.E., and J.E. Munyaneza. 2012. Potato psyllids and associated pathogens: a diagnostic aid. Florida State Collection of Arthropods, Gainesville, FL. Online: http://www.fsca-dpi.org/Homoptera_Hemiptera/Potato_psyllids_and_associated_pathogens.pdf
  74. Hamm, P. 2012. Zebra chip found in volunteers. Potato Progress 12(11): 1–2.Google Scholar
  75. Hamm, P.B., S.I. Rondon, J.M. Crosslin, and J.E. Munyaneza. 2011. A new threat in the Columbia Basin of Oregon and Washington: zebra chip, pp. 1–5. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  76. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’ found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.PubMedCrossRefGoogle Scholar
  77. Harris, B. 2012. Analysis of the zebra chip treatment decision facing potato farmers in the Columbia Basin. M.S. Thesis, University of Idaho, Moscow, ID.Google Scholar
  78. Henne, D.C., L. Paetzold, F. Workneh, and C.M. Rush. 2010a. Evaluation of potato psyllid cold tolerance, overwintering survival, sticky trap sampling, and effects of liberibacter on potato psyllid alternate host plants, pp.149–153. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  79. Henne, D.C., F. Workneh, and C.M. Rush. 2010b. Movement of Bactericera cockerelli (Heteroptera: Psyllidae) in relation to potato canopy structure, and effects of potato tuber weights. Journal of Economic Entomology 103: 1524–1530.PubMedCrossRefGoogle Scholar
  80. Henne, D.C., F. Workneh, A. Wen, A.A. Price, J.S. Pasche, N.C. Gudmestad, and C.M. Rush. 2010c. Characterization and epidemiological significance of potato plants grown from seed tubers affected by zebra chip disease. Plant Disease 94: 659–665.CrossRefGoogle Scholar
  81. Henne, D.C., J.A. Goolsby, T.E. Mirkov, and J.E. Munyaneza. 2011. Potato psyllid and zebra chip disease management in South Texas, pp. 41–45. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  82. Henne, D.C., F. Workneh, and C.M. Rush. 2012. Spatial patterns and spread of potato zebra chip disease in the Texas Panhandle. Plant Disease 96: 948–956.CrossRefGoogle Scholar
  83. Jackson, B.C., J. Goolsby, A. Wyzykowski, N. Vitovksy, and B. Bextine. 2009. Analysis of genetic relationship between potato psyllid (Bactericera cokerelli) populations in the United States, Mexico, and Guatemala using ITS2 and inter simple sequence repeat (ISSR) data. Subtropical Plant Science 61: 1–5.Google Scholar
  84. Jagoueix, S., J.M. Bove, and M. Garnier. 1994. PCR detection of the two ‘Candidatus’ Liberobacter species associated with greening disease of citrus. Molecular and Cellular Probes 10: 43–50.CrossRefGoogle Scholar
  85. Jensen, D.D. 1954. Notes on the potato psyllid, Paratrioza cockerelli (Sulc) (Hemiptera: Psyllidae). Pan-Pacific Entomologist 30: 161–165.Google Scholar
  86. Jensen, A. 2012. Updates on potato psyllid and zebra chip (ZC). Potato Progress 12(10): 1–6.Google Scholar
  87. Knowlton, G.F., and M.J. Janes. 1931. Studies on the biology of Paratrioza cockerelli (Sulc). Annals of the Entomological Society of America 24: 283–291.Google Scholar
  88. Knowlton, G.F., and W.L. Thomas. 1934. Host plants of the potato psyllid. Journal of Economic Entomology 27: 547.Google Scholar
  89. Kölber, M., Z. Acs, I. Ember, Z. Nagy, C. Talaber, J. Horrocks, I. Hope-Johnstone, S. Marchenko, V. Gonchar, I. Kiselev, A. Lupascu, M. Munteanu, and N. Filip. 2010. Phytoplasma infection of chips potatoes in Romania and South Russia (2008–2010), pp. 50–54. In Proceedings of the 10th Annual Zebra Chip reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  90. Lacey, L.A., F. de la Roza, and D.R. Horton. 2009. Insecticidal activity of entomopathogenic fungi (Hypocreales) for potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae): development of bioassay techniques, effect of fungal species and stage of the psyllid. Biocontrol Science and Technology 19: 957–970.CrossRefGoogle Scholar
  91. Lacey, L.A., T.-X. Liu, J.L. Buchman, J.E. Munyaneza, J.A. Goolsby, and D.R. Horton. 2011. Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biological Control 56: 271–278.CrossRefGoogle Scholar
  92. Lee, I.M., K.D. Bottner, J.E. Munyaneza, R.E. Davis, J.M. Crosslin, L.J. du Toit, and T. Crosby. 2006. Carrot purple leaf: a new spiroplasmal disease associated with carrots in Washington State. Plant Disease 90: 989–993.CrossRefGoogle Scholar
  93. Levy, J., A. Ravindran, D. Gross, C. Tamborindeguy, and E. Pierson. 2011. Translocation of ‘Candidatus Liberibacter solanacearum’, the zebra chip pathogen, in potato and tomato. Phytopathology 101: 1285–1291.PubMedCrossRefGoogle Scholar
  94. Li, W., J.A. Abad, R.D. French-Monar, J. Rascoe, A. Wen, N.C. Gudmestad, G.A. Secor, I.M. Lee, Y. Duan, and L. Levy. 2009. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. Journal of Microbiological Methods 78: 59–65.PubMedCrossRefGoogle Scholar
  95. Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008a. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  96. Liefting, L.W., L.I. Ward, J.B. Shiller, and G.R.G. Clover. 2008b. A new ‘Candidatus Liberibacter’ species in Solanum betaceum (tamarillo) and Physalis peruviana (cape gooseberry) in New Zealand. Plant Disease 92: 1588.CrossRefGoogle Scholar
  97. Liefting, L.W., P.W. Sutherland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009a. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Disease 93: 208–214.CrossRefGoogle Scholar
  98. Liefting, L.W., S. Veerakone, L.I. Ward, and G.R.G. Clover. 2009b. First report of ‘Candidatus Phytoplasma australiense’ in potato. Plant Disease 93: 969.CrossRefGoogle Scholar
  99. Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.G. Clover. 2009c. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematics and Evolutionary Microbiology 59: 2274–2276.CrossRefGoogle Scholar
  100. Lin, H., H. Doddapaneni, J.E. Munyaneza, E. Civerolo, V.G. Sengoda, J.L. Buchman, and D.C. Stenger. 2009. Molecular characterization and phylogenetic analysis of 16S rRNA from a new species of “Candidatus Liberibacter” associated with zebra chip disease of potato (Solanum tuberosum L.) and the potato psyllid (Bactericera cockerelli Sulc). Journal of Plant Pathology 91: 215–219.Google Scholar
  101. Lin, H., J. Glynn, M.S. Islam, A. Wen, and N.C. Gudmestad. 2011a. Multilocus sequencing typing markers for genotyping and population genetic analyses of Candidatus Liberibacter solanacearum, pp. 32–35. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  102. Lin, H., B. Lou, J.M. Glynn, H. Doddapaneni, E. Civerolo, C. Chen, Y. Duan, L. Zhou, and C.M. Vahling. 2011b. The complete genome sequence of ‘Candidatus Liberibacter solanacearum’, the bacterium associated with potato zebra chip disease. PloS One 6: e19135. doi: 10.1371/journal.pone.0019135.PubMedCrossRefGoogle Scholar
  103. Lin, H., M.S. Islam, Y. Bai, A. Wen, S. Lan, N.C. Gudmestad, and E.L. Civerolo. 2012. Genetic diversity of ‘Candidatus Liberibacter solanacearum’ strains in the United States and Mexico revealed by simple sequence repeat markers. European Journal of Plant Pathology 132: 297–308.CrossRefGoogle Scholar
  104. List, G.M. 1939. The effect of temperature upon egg deposition, egg hatch and nymphal development of Paratrioza cockerelli (Sulc). Journal of Economic Entomology 32: 30–36.Google Scholar
  105. List, G.M., and L.B. Daniels. 1934. A promising control for psyllid yellows of potatoes. Science 79: 79.PubMedCrossRefGoogle Scholar
  106. Liu, D., and J.T. Trumble. 2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata 123: 35–42.CrossRefGoogle Scholar
  107. Liu, D., J.T. Trumble, and R. Stouthamer. 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis et Applicata 118: 177–183.CrossRefGoogle Scholar
  108. Liu, T.X., Y.M. Zhang, L.N. Peng, P. Rojas, and J.T. Trumble. 2012. Risk assessment of selected insecticides on Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Triozodae). Journal of Economic Entomology 105: 490–496.PubMedCrossRefGoogle Scholar
  109. Martini, X., S. Seibert, S.M. Prager, and C. Nansen. 2012. Sampling and interpretation of psyllid nymph counts in potatoes. Entomologia Experimentalis et Applicata 143: 103–110.Google Scholar
  110. McKenzie, C.L., and R.G. Shatters Jr. 2009. First report of “Candidatus Liberibacter psyllaurous” associated with psyllid yellows of tomato in Colorado. Plant Disease 93: 1074.CrossRefGoogle Scholar
  111. McMullen, R.D., and C. Jong. 1971. Dithiocarbamate fungicides for control of pear psylla. Journal of Economic Entomology 64: 1266–1270.PubMedGoogle Scholar
  112. Miles, G.P., J.L. Buchman, and J.E. Munyaneza. 2009. Impact of Zebra Chip Disease on the Mineral Content of Potato Tubers. American Journal of Potato Research 86: 481–489.CrossRefGoogle Scholar
  113. Miles, G.P., M.A. Samuel, J. Chen, E.L. Civerolo, and J.E. Munyaneza. 2010. Evidence that cell death is associated with zebra chip disease in potato tubers. American Journal of Potato Research 87: 337–349.CrossRefGoogle Scholar
  114. Miller, J.C., D.C. Scheuring, J. Koym, S.D. Turner, R.G. Novy, J.T. Trumble, C.D. Butler, C. Nansen, K. Vaughn, T.X. Liu, J.E. Munyaneza, E. Pierson, C.M. Rush, J. Jifon, R. French, C. Tamborindeguy, and P. Porter. 2010. Progress in identifying host plant tolerance/resistance to ZC in potato germplasm, pp. 96–98. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  115. Munyaneza, J.E. 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist 35: 417–477.CrossRefGoogle Scholar
  116. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2006. The beet leafhopper (Hemiptera: Cicadellidae) transmits the Columbia Basin potato purple top phytoplasma to potatoes, beets, and weeds. Journal of Economic Entomology 99: 268–272.PubMedCrossRefGoogle Scholar
  117. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.PubMedCrossRefGoogle Scholar
  118. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  119. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Sengoda. 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.Google Scholar
  120. Munyaneza, J.E., J.L. Buchman, and J.M. Crosslin. 2009a. Seasonal occurrence and abundance of the potato psyllid, Bactericera cockerelli, in south central Washington. American Journal for Potato Research 86: 513–518.CrossRefGoogle Scholar
  121. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, G. De la Rosa-Lozano, and A. Sanchez. 2009b. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with zebra chip disease in Mexico. Plant Disease 93: 552.CrossRefGoogle Scholar
  122. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, J. Garzon-Tiznado, and O. Cardenas-Valenzuela. 2009c. First report of ‘Candidatus Liberibacter solanacearum’ in tomato plants in Mexico. Plant Disease 93: 1076.Google Scholar
  123. Munyaneza, J.E., J.L. Buchman, J.A. Goolsby, A.P. Ochoa, and G. Schuster. 2010a. Impact of potato planting timing on zebra chip incidence in Texas, pp. 106–109. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  124. Munyaneza, J.E., J.L. Buchman, V.G. Sengoda, T.W. Fisher, G. Bester, R. Hoopes, C. Miller, R.G. Novy, P. Van Hest, and J. Nordgaard. 2010b. Potato variety screening trial for zebra chip resistance under controlled field cage conditions, pp. 200–203. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  125. Munyaneza, J.E., T.W. Fisher, V.G. Sengoda, S.F. Garczynski, A. Nissinen, and A. Lemmetty. 2010c. First report of “Candidatus Liberibacter solanacearum” in carrots in Europe. Plant Disease 94: 639.CrossRefGoogle Scholar
  126. Munyaneza, J.E., T.W. Fisher, V.G. Sengoda, S.F. Garczynski, A. Nissinen, and A. Lemmetty. 2010d. Association of “Candidatus Liberibacter solanacearum” with the psyllid Trioza apicalis (Hemiptera: Triozidae) in Europe. Journal of Economic Entomology 103: 1060–1070.PubMedCrossRefGoogle Scholar
  127. Munyaneza, J.E., J.L Buchman, B.E. Heilman, V.G. Sengoda, G. Bester, R. Hoopes, C. Miller, R. Novy, and P. Van Hest. 2011a. Update on potato variety screening trial for zebra chip under controlled field cage conditions, pp. 106–109. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. Dallas, TX (November 6–9, 2011).Google Scholar
  128. Munyaneza, J.E., J.L. Buchman, B.E. Heilman, V.G. Sengoda, and D.C. Henne. 2011b. Effects of zebra chip and potato psyllid on potato seed quality, pp. 37–40. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A Rashed, and C.M. Rush. Dallas, TX (November 6–9, 2011).Google Scholar
  129. Munyaneza, J.E., A. Lemmetty, A.I. Nissinen, V.G. Sengoda, and T.W. Fisher. 2011c. Molecular detection of aster yellows phytoplasma and “Candidatus Liberibacter solanacearum” in carrots affected by the psyllid Trioza apicalis (Hemiptera: Triozidae) in Finland. Journal of Plant Pathology 93: 697–700.Google Scholar
  130. Munyaneza, J.E., J.L. Buchman, V.G. Sengoda, T.W. Fisher, and C.C. Pearson. 2011d. Susceptibility of selected potato varieties to zebra chip potato disease. American Journal of Potato Research 88: 435–440.CrossRefGoogle Scholar
  131. Munyaneza, J.E., V.G. Sengoda, J.L. Buchman, and T.W. Fisher. 2012a. Effects of temperature on ‘Candidatus Liberibacter solanacearum’ and zebra chip potato disease symptom development. Plant Disease 96: 18–23.CrossRefGoogle Scholar
  132. Munyaneza, J.E., V.G. Sengoda, R. Stegmark, A.K. Arvidsson, O. Anderbrant, J.K. Yuvaraj, B. Ramert, and A. Nissinen. 2012b. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Sweden. Plant Disease 96: 453.CrossRefGoogle Scholar
  133. Munyaneza, J.E., V.G. Sengoda, L. Sundheim, and R. Meadow. 2012c. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Norway. Plant Disease 96: 454.CrossRefGoogle Scholar
  134. Nachappa, P., J. Levy, E. Pierson, and C. Tamborindeguy. 2011. Diversity of endosymbionts in the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), vector of zebra chip disease of potato. Current Microbiology 62: 1510–1520.PubMedCrossRefGoogle Scholar
  135. Nachappa, P., A.A. Shapiro, and C. Tamborindeguy. 2012. Effect of ‘Candidatus Liberibacter solanacearum’ on fitness of its insect vector, Bactericera cockerelli (Hemiptera: Triozidae), on tomato. Phytopathology 102: 41–46.PubMedCrossRefGoogle Scholar
  136. Nansen, C., K. Vaughn, Y. Xue, C.M. Rush, F. Workneh, J.A. Goolsby, N. Troclair, J. Anciso, and X. Martini. 2010. Spray coverage and insecticide performance, pp. 78–82. In Proceedings of the 10th Annual Zebra Chip reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  137. Navarre, D.A., R. Shakya, J. Holden, and J.M. Crosslin. 2009. LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. American Journal of Potato Research 86: 88–95.CrossRefGoogle Scholar
  138. Nelson, W.R., T.W. Fisher, and J.E. Munyaneza. 2011. Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. European Journal of Plant Pathology 130: 5–12.CrossRefGoogle Scholar
  139. Nicaragua-MAGFOR. 2012. Establecer medidas fitossanitarias para o manajo entegrado de “Punta Morada” e se vector Psilido Paratrioza nos cultivos de dolanaceas. OMC Mediante Notification Numero G/SPS/N/NIC/65, 02 Marzo de 2012.Google Scholar
  140. Nissinen, A.I., A. Lemmetty, J.M. Pihlava, L. Jauhiainen, J.E. Munyaneza, and P. Vanhala. 2012. Effects of carrot psyllid (Trioza apicalis) feeding on carrot yield and content of sugars and phenolic compounds. Annals of Applied Biology 161: 68–80.Google Scholar
  141. Nolte, P., N. Olsen, E. Wenninger, and M. Thornton. 2011. Zebra chip found in Idaho, pp. 6. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  142. Novy, R.G., J. Whitworth, J. Alvarez, J.T. Trumble, C.D. Butler, J.L. Buchman, and J.E. Munyaneza. 2010. Unique tri-species germplasm with multiple insect resistances and its use in breeding for resistance to psyllid/ZC, pp. 103–105. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  143. Ogden, S.C. 2011. Tomato potato psyllid and liberibacter in New Zealand – impact and research programme overview, pp. 173–177. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  144. Pearson, C.C., E.A. Backus, and J.E. Munyaneza. 2010. Feeding biology of the potato psyllid, Bactericera cockerelli, pp. 178–182. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  145. Peng, L., J.T. Trumble, J.E. Munyaneza, and T.X. Liu. 2011. Repellency of a kaolin particle film to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae), on tomato under laboratory and field conditions. Pest Management Science 67: 815–824.PubMedCrossRefGoogle Scholar
  146. Pierson, E., C. Miller, D. Scheuring, T.X. Liu, X. Yang, J. Jifon, D. Gross, R. Aravind, and J. Levy. 2010. Investigations on putative zebra chip (ZC) tolerant advanced selections, pp. 99–102. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  147. Pitman, A.R., G.M. Drayton, S.J. Kraberger, R.A. Genet, and I.A.W. Scott. 2011. Tuber transmission of ‘Candidatus Liberibacter solanacearum’ and its association with zebra chip on potato in New Zealand. European Journal of Plant Pathology 129: 389–398.CrossRefGoogle Scholar
  148. Pletsch, D.J. 1947. The potato psyllid Paratrioza cockerelli (Sulc) its biology and control. Montana Agricultural Experiment Station Bulletin 446.Google Scholar
  149. Price, D.R.G., and J.A. Gatehouse. 2008. RNAi-mediated crop protection against insects. Trends in Biotechnology 26: 393–400.PubMedCrossRefGoogle Scholar
  150. Puketapu, A., and N. Roskruge. 2011. The tomato-potato psyllid lifecycle on three traditional Maori food sources. Agronomy New Zealand 41: 167–173.Google Scholar
  151. Rashed, A., F. Workneh, L. Paetzold, J. Gray, C. Wallis, and C.M. Rush. 2011. Zebra chip disease severity and ‘Candidatus Liberibacter solanacearum’ titer load of the potato hosts inoculated throughout the field season, pp. 27–31. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  152. Ravindran, A., J. Levy, E. Pierson, and D. Gross. 2011a. Development of primers for improved PCR detection of the potato zebra chip pathogen, ‘Candidatus Liberibacter solanacearum’. Plant Disease 95: 1542–1546.CrossRefGoogle Scholar
  153. Ravindran, A., J. Levy, E. Pierson, D. Gross. 2011b. LAMP PCR lights the way for a simple, fast method for detection of Lso in infected potatoes and psyllids, pp. 79–82. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  154. Rehman, M., J. Melgar, C. Rivera, N. Urbina, A.M. Idris, and J.K. Brown. 2010. First report of “Candidatus Liberibacter psyllaurous” or “Ca. Liberibacter solanacearum” associated with severe foliar chlorosis, curling, and necrosis and tuber discoloration of potato plants in Honduras. Plant Disease 94: 376.CrossRefGoogle Scholar
  155. Richards, B.L. 1928. A new and destructive disease of the potato in Utah and its relation to the potato psylla. Phytopathology 18: 140–141.Google Scholar
  156. Richards, B.L. 1931. Further studies with psyllid yellows of the potato. Phytopathology 21: 103.Google Scholar
  157. Richards, B.L. 1933. Psyllid yellows of the potato. Journal of Agricultural Research 46: 189–216.Google Scholar
  158. Richards, B.L., and H.L. Blood. 1933. Psyllid yellows of the potato. Journal of Agricultural Research 46: 189–216.Google Scholar
  159. Romney, V.E. 1939. Breeding areas of the tomato psyllid, Paratrioza cockerelli (Sulc). Journal of Economic Entomology 32: 150–151.Google Scholar
  160. Rondon, S., A. Schreiber, A. Jensen, P. Hamm, J.E. Munyaneza, P. Nolte, N. Olsen, E. Wenninger, D. Henne, C, Wohleb, and T. Waters. 2012. Potato psyllid vector of zebra chip disease in the Pacific Northwest: biology, ecology, and management. Oregon State University Extension Bulletin 633, online: http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/30058/pnw633.pdf
  161. Rosson, P. 2009. Economic impacts of zebra chip on Texas. CNAS Issue Brief 2009-01, AgriLife Research, Texas A & M University.Google Scholar
  162. Rowe, J.A., and G.F. Knowlton. 1935. Studies upon the morphology of Paratrioza cockerelli (Sulc). Journal of Utah Academic Science 12: 233–237.Google Scholar
  163. Rubio-Covarrubias, O.A., I.H. Almeyda-Leon, J.I. Moreno, J.A. Sanchez-Salas, R.F. Sosa, J.T. Borbon-Soto, C.D. Hernandez, J.A. Garzon-Tiznado, R.R. Rodriguez, and M.A. Cadena-Hinajosa. 2006. Distribution of potato purple top and Bactericera cockerelli Sulc. in the main potato production zones in Mexico. Agricultura Técnica en México 32: 201–211.Google Scholar
  164. Rubio-Covarrubias, O.A., I.H. Almeyda-Leon, M.A. Cadena-Hinajosa, and R. Lobato-Sanchez. 2011a. Relation between Bactericera cockerelli and presence of Candidatus Liberibacter psyllaurous in commercial fields of potato. Revista Mexicana de Ciencias Agricolas 2: 17–28.Google Scholar
  165. Rubio-Covarrubias, O.A., M.A. Cadena-Hinajosa, and I.H. Almeyda-Leon. 2011b. A summary of research work on potato zebra chip in the central parts of Mexico, pp. 183–187. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  166. Rush, C.M., D.C. Henne, F. Workneh, and L. Paetzold. 2010. Investigating titer variation of Candidatus Liberibacter solanacearum in individual potato psyllids, pp. 19–23. In Proceedings of the 10th Annual Zebra Chip Reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar
  167. Schreiber, A., A. Jensen, and S. Rondon. 2012. Biology and management of potato psyllid in Pacific Northwest potatoes. Washington State Potato Commission Online: http://www.potatoes.com/IPMStuff/PDFs/PotatoPsyllid.pdf
  168. Scott, I., N. Berry, G. Walker, A. Pitman, P. Workman, and P. Wright. 2009. Psyllid, Liberibacter, and Phytoplasma Science Research Programme Update. Horticulture New Zealand, Plant and Food Research.Online: http://potatonz.org/user_files/PDF/Psyllid_research_update_&_control_options_-_Plant_&_Food.pdf
  169. Secor, G.A., and V. Rivera-Varas. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Revista Latinoamericana de la Papa (Suplemento) 1: 1–8.Google Scholar
  170. Secor, G.A., V. Rivera-Varas, J.A. Abad, I.M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93: 574–583.CrossRefGoogle Scholar
  171. Sengoda, V.G., J.E. Munyaneza, J.M. Crosslin, J.L. Buchman, and H.R. Pappu. 2010. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. American Journal of Potato Research 87: 41–49.CrossRefGoogle Scholar
  172. Šulc, K. 1909. Trioza cockerelli n. sp., a novelty from North America, being also of economic importance. Acta Societatis Entomologicae Bohemiae 6: 102–108.Google Scholar
  173. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.Google Scholar
  174. Teulon, D.A.J., P.J. Workman, K.L. Thomas, and M.C. Nielsen. 2009. Bactericera cockerelli: incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection 62: 136–144.Google Scholar
  175. Thomas, K.L., D.C. Jones, L.B. Kumarasinghe, J.E. Richmond, G.S.C. Gill, and M.S. Bullians. 2011. Investigation into the entry pathway for the tomato potato psyllid Bactericera cockerelli. New Zealand Plant Protection 64: 259–268.Google Scholar
  176. Trevino, J., G. Schuster, S.D. Nelso, A.P. Ochoa, and J.E. Munyaneza. 2011. Effects of potato planting dates on psyllid populations and zebra chip incidence in Texas, pp. 127–130. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. Dallas, TX (November 6–9, 2011).Google Scholar
  177. Trumble, J. 2008. The tomato psyllid: a new problem on fresh market tomatoes in California and Baja Mexico. University of California Cooperative Extension, http://ceventura.ucdavis.edu/Vegetable_Crops/Tomato_Psyllid.htm.
  178. Trumble, J. 2009. Potato psyllid. Center for Invasive Species Research, University of California Riverside, http://cisr.ucr.edu/potato_psyllid.html.
  179. Tucuch-Haas, J.I., J.C. Rodriguez-Maciel, A. Lagunes-Tejeda, G. Silva-Aguayo, S. Aguilar-Medel, A. Robles-bermudez, and J.M. Gonzalez-Camacho. 2010. Toxicity of spiromesifen to the development stages of Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Neotropical Entomology 39: 436–440.PubMedCrossRefGoogle Scholar
  180. Vega-Guttierrez, M.T., J.C. Rodriguez-Maciel, O. Diaz-Gomez, R. Bujanos-Muniz, D. Mota-Sanchez, J.L. Martinez-Carillo, A. Lagunes-Tejeda, and J.A. Garzon-Tiznado. 2008. Susceptibility to insecticides in two Mexican populations of tomato-potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Agrociencia 42: 463–471.Google Scholar
  181. Wallis, R.L. 1946. Seasonal occurrence of the potato psyllid in the North Platte Valley. Journal of Economic Entomology 39: 689–694.Google Scholar
  182. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. USDA Technical Bulletin 1107.Google Scholar
  183. Wallis, C.M., and J. Chen. 2011. Zebra chip symptoms are associated with increased phenolic, pathogenesis-related protein, and amino acid levels, pp. 159–162. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  184. Wen, A., I. Mallik, V.Y. Alvarado, J.S. Pasche, X. Wang, W. Li, L. Levy, H. Lin, H.B. Scholthof, T.E. Mirkov, C.R. Rush, and N.C. Gudmestad. 2009. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra complex disease of potato in North America. Plant Disease 93: 1102–1115.CrossRefGoogle Scholar
  185. Wen, A., H. Lin, and N.C. Gudmestad. 2011. Development of PCR assay using SSR primers for detection and genotyping of “Candidatus Liberibacter solanacearum”, pp. 74–78. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  186. Workneh, F., J.A. Goolsby, D.C. Henne, A. Rashed, L. Paetzold, P.B. Hamm, S. Rondon, and C.M. Rush. 2011. Exploratory assessment of weather variables in relation to psyllid/ZC prevalence, pp. 7–11. In Proceedings of the 11th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed, and C.M. Rush. San Antonio, TX (November 6–9, 2011).Google Scholar
  187. Workneh, F., D.C. Henne, A.C. Childers, L. Paetzold, and C.M. Rush. 2012. Assessments of the edge effects in intensity of potato zebra chip disease. Plant Disease 96: 943–947.CrossRefGoogle Scholar
  188. Wuriyanghan, H., C. Rosa, and B.W. Falk. 2011. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericera cockerelli. PloS One 6(11): e277736. doi: 10.1371/journal.pone.0027736.CrossRefGoogle Scholar
  189. Yang, X.B., and T.X. Liu. 2009. Life history and life tables of Bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environmental Entomology 38: 1661–1667.PubMedCrossRefGoogle Scholar
  190. Yang, X.B., Y.M. Zhang, L. Hua, and T.X. Liu. 2010a. Life history and life tables of Bactericera cockerelli (Hemiptera: Psyllidae) on potato under laboratory and field conditions in the Lower Rio Grande Valley of Texas. Journal of Economic Entomology 103: 1729–1734.PubMedCrossRefGoogle Scholar
  191. Yang, X.B., Y.M. Zhang, L. Hua, L.N. Peng, J.E. Munyaneza, and T.X. Liu. 2010b. Repellency of selected biorational insecticides to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). Crop Protection 29: 1329–1324.Google Scholar
  192. Zens, B., C.M. Rush, D.C. Henne, F. Workneh, E. Bynum, C. Nansen, and N.C. Gudmestad. 2010. Efficacy of seven chemical programs to control potato psyllids in the Texas Panhandle, pp. 83–87. In Proceedings of the 10th Annual Zebra Chip reporting Session, ed. F. Workneh and C.M. Rush. Dallas, TX (November 7–10, 2010).Google Scholar

Copyright information

© Potato Association of America 2012

Authors and Affiliations

  1. 1.United States Department of Agriculture-Agricultural Research ServiceYakima Agricultural Research LaboratoryWapatoUSA

Personalised recommendations