Advertisement

American Journal of Potato Research

, Volume 89, Issue 5, pp 384–391 | Cite as

Pesticide Contamination has Little Effect on the Genetic Diversity of Potato Species

  • Alfonso del Rio
  • John Bamberg
  • Ruth Centeno-Diaz
  • Julian Soto
  • Alberto Salas
  • William Roca
  • David Tay
Article
  • 223 Downloads

Abstract

Our previous study examining the effects of agrichemicals on the reproductive capacity of potato species revealed that the pesticide carbofuran negatively influenced flowering duration and pollen viability. These changes could limit reproductive ability non-randomly, modify allelic frequencies, and cause genetic drift. This study utilized Simple Sequence Repeat (SSR) markers to examine that possibility by assessing the genetic structure of progenies derived from potato populations exposed to two levels of carbofuran. A total of eight populations of five potato species (acl, buk, hcr, med and rap) were evaluated. An untreated, uncontaminated population was included as control for comparison. The results revealed that most of the 116 SSR allele frequencies assessed did not differ significantly between control and progenies of pesticide-contaminated parents. A few markers showed a significant frequency shift in some species, specifically buk and med. However, this study reveals that although the pesticide reduces reproduction in wild potato species populations, changes in population genetics are minor and do not significantly threaten diversity.

Keywords

Genetic drift Reproductive capacity SSR markers Population differentiation Carbofuran Solanum 

Resumen

Nuestro estudio previo sobre los efectos de los agroquímicos en la capacidad reproductiva de especies de papa reveló que el plaguicida carbofurán influenció negativamente la duración de la floración y la viabilidad del polen. Estos cambios pudieran limitar la habilidad reproductiva no al azar, modificar las frecuencias alélicas y causar cambio genético. En este estudio se utilizaron marcadores de Repeticiones de Secuencia Simple (SSR) para examinar esa posibilidad, mediante el análisis de la estructura genética de las progenies derivadas de poblaciones de papa expuestas a dos niveles de carbofuran. Se evaluaron un total de ocho poblaciones de cinco especies de papa (acl, buk, hcr, med y rap). Se incluyó una población no tratada, no contaminada, como testigo de comparación. Los resultados revelaron que la mayoría de las frecuencias alélicas de los 116 SSR analizados no difirieron significativamente entre el testigo y las progenies de padres contaminados con el plaguicida. Unos cuantos marcadores mostraron una frecuencia de cambio significativa en algunas especies, específicamente buk y med. No obstante, este estudio revela que aunque el plaguicida reduce la reproducción en poblaciones de especies silvestres de papa, los cambios en la genética de las poblaciones son menores, y no amenazan significativamente a la diversidad.

Notes

Acknowledgments

The authors wish to express their thanks to the staff of the International Potato Center for their technical assistance. We also thank Emily Haga and Holly Ruess for their constructive comments and editing of the manuscript.

Disclaimer

Use of a particular brand name does not imply endorsement by USDA.

References

  1. Anderson, J.A. 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181–186.PubMedCrossRefGoogle Scholar
  2. Bamberg, J.B., and A.H. del Rio. 2003. Vulnerability of alleles in the US potato genebank extrapolated from RAPDs. American Journal of Potato Research 80: 79–85.CrossRefGoogle Scholar
  3. De Jong, H. 1983. Inheritance of sensitivity to the herbicide metribuzin in cultivated diploid potatoes. Euphytica 32: 41–48.CrossRefGoogle Scholar
  4. de Temmerman, L., A. Hacour, and M. Guns. 2002. Changing climate and potential impacts on potato yield and quality (CHIP): introduction, aims and methodology. European Journal of Agronomy 17: 233–242.CrossRefGoogle Scholar
  5. del Rio, A.H., J.B. Bamberg, and Z. Huaman. 2006. Genetic equivalence of putative duplicate germplasm collections held at CIP and US potato genebanks. American Journal of Potato Research 83: 279–285.CrossRefGoogle Scholar
  6. Delbaere, B. 2005. European policy review biodiversity and climate change. Journal for Nature Conservation 13: 275–276.CrossRefGoogle Scholar
  7. Dorken, M.E., and C.G. Eckert. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). Journal of Ecology 89: 339–350.CrossRefGoogle Scholar
  8. Doyle, J.J., and J.L. Doyle. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13–15.Google Scholar
  9. Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5: 435–445.PubMedCrossRefGoogle Scholar
  10. FAO (Food and Agriculture Organization of the United Nations). 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome. Commission on Genetic Resources for Food and Agriculture, FAO.Google Scholar
  11. Ghislain, M., F. Rodriguez, F. Villamon, J. Nunez, R. Waugh and M. Bonierbale. 2000. Establishment of microsatellite assays for potato genetic identification. CIP (International Potato Center) Program Report 1999-2000: 167–174.Google Scholar
  12. Ghislain, M., B. Trognitz, M.R. Herrera, J. Solis, G. Casallo, C. Vasquez, O. Hurtado, R. Castillo, L. Portal, and M. Orrillo. 2001. Genetic loci associated with field resistance to late blight in offspring of Solanum phureja and tuberosum grown under short-day conditions. Theoretical and Applied Genetics 103: 433–442.CrossRefGoogle Scholar
  13. Ghislain, M., D.M. Spooner, F. Rodrıguez, F. Villamon, J. Nunez, and C. Vasquez. 2004. Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theoretical and Applied Genetics 108: 881–890.PubMedCrossRefGoogle Scholar
  14. Isenring, R. 2010. Pesticides and the loss of biodiversity: How intensive pesticide use affects wildlife populations and species diversity. London: Pesticide Action Network (PAN) Europe Report.Google Scholar
  15. Ispizua, V.N., I.R. Guma, S. Feingold, and A.M. Clausen. 2007. Genetic diversity of potato landraces from northwestern Argentina assessed with simple sequence repeats (SSRs). Genetic Resources and Crops Evolution 54: 1833–1848.CrossRefGoogle Scholar
  16. Karthikeyan, R., L.C. Davis, L.E. Erickson, K. Al-Khatib, P.A. Kulakow, P.L. Barnes, S. L. Hutchinson and A.A. Nurzhanova. 2003. Studies on responses of non-target plants to pesticides: a review. http://www.engg.ksu.edu/HSRC/phytoremediation/pesticide.pdf. Accessed 24 July 2012.
  17. Kawchuk, L.M., J.T. Lynch, B. Penner, D. Sillito, and F. Kulcsar. 1996. Characterization of Solanum tuberosum simple sequence repeats and application to potato cultivar identification. American Potato Journal 73: 325–335.CrossRefGoogle Scholar
  18. Loveless, M.D., and J.L. Hamrick. 1984. Ecological determinants of genetic structure of plant populations. Annual Review of Ecology and Systematics 15: 65–95.CrossRefGoogle Scholar
  19. Peakall, R., and P.E. Smouse. 2006. GENALEX 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.CrossRefGoogle Scholar
  20. Piquot, Y., D. Petit, M. Valero, J. Cuguen, P. de Laguerie, and P. Vernet. 1998. Variation in sexual and asexual reproduction among young and old populations of the perennial macrophyte Sparganium erectum. Oikos 82: 139–148.CrossRefGoogle Scholar
  21. Provan, J., W. Powell, H. Dewar, G. Bryan, G.C. Machray, and R. Waugh. 1999. An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proceedings of the Royal Society of London B 266: 633–639.CrossRefGoogle Scholar
  22. Raimondi, J.P., I.E. Peralta, R.W. Masuelli, S. Feingold, and E.I. Camadro. 2005. Examination of hybrid origin of the wild potato Solanum ruiz-lealii Brucher. Plant Systematics and Evolution 253: 33–51.CrossRefGoogle Scholar
  23. Rios, D., M. Ghislain, F. Rodriguez, and D.M. Spooner. 2007. What is the origin of the European potato? Evidence from Canary Island landraces. Crop Science 47: 1271–1280.CrossRefGoogle Scholar

Copyright information

© Potato Association of America 2012

Authors and Affiliations

  • Alfonso del Rio
    • 1
  • John Bamberg
    • 1
  • Ruth Centeno-Diaz
    • 2
  • Julian Soto
    • 2
  • Alberto Salas
    • 2
  • William Roca
    • 2
  • David Tay
    • 2
  1. 1.USDA/Agriculture Research Service, US Potato GenebankSturgeon BayUSA
  2. 2.International Potato Center (CIP), Lima, PeruLimaPeru

Personalised recommendations