Advertisement

American Journal of Potato Research

, Volume 87, Issue 4, pp 337–349 | Cite as

Evidence that Cell Death is Associated with Zebra Chip Disease in Potato Tubers

  • Godfrey P. Miles
  • Marcus A. Samuel
  • Jianchi Chen
  • Edwin L. Civerolo
  • Joseph E. Munyaneza
Article

Abstract

Zebra chip (ZC) is an established and highly destructive disease of potato (Solanum tuberosum L.) that occurs in several southwestern states of the United States, Mexico, Central America, and New Zealand. The causal agent for this disease has not been identified. However, the bacterium “Candidatus Liberibacter solanacearum” and the potato psyllid, Bactericera cockerelli (Šulc), its insect vector, are associated with the disease. Tubers from ZC-affected potato plants exhibit dramatic browning of vascular tissue concomitant with “necrotic flecking” both of which can affect the entire tuber. Upon frying, these tubers develop a characteristic striped pattern of discoloration rendering them unmarketable. These characteristic ZC symptoms in the tubers have been suggested to be associated with general cell death, though no evidence to confirm this hypothesis has been shown. In order to determine if cell death is associated with ZC disease, a series of experiments were undertaken. Cell death was initially quantified by comparing cellular ion leakage from ZC-affected and ZC-free tubers. Levels of ion leakage were found to be significantly higher in ZC-affected tubers compared to ZC-free tubers. To examine further the association of cell death with ZC disease, ZC-affected and ZC-free tubers were compared using classical histochemical staining methods in conjunction with optical microscopy, which revealed layers of dead cells surrounding numerous, small, irregularly-shaped lesions throughout the parenchymatic medullary region, vascular ring and cortex of ZC-affected tubers. This cell death was confirmed using high-resolution, field-emission scanning electron microscopy (FE-SEM) of fresh-cut tuber tissue.

Keywords

Bactericera cockerelli Potato psyllid Candidatus Liberibacter solanacearum Solanum tuberosum Cultivar Atlantic FE-SEM 

Resumen

Zebra chip (ZC) es una enfermedad establecida y altamente destructiva de papa (Solanum tuberosum L.) que se presenta en varios estados del suroeste de los Estados Unidos, México, América Central y Nueva Zelandia. El agente causal de esta enfermedad no ha sido identificado. No obstante, la bacteria “Candidatus Liberibacter solanacearum” y el psílido de la papa Bactericera cockerelli (Šulc), su insecto vector, están asociados con la enfermedad. Los tubérculos de plantas afectadas por ZC presentan oscurecimiento dramático del tejido vascular concomitante con “pecas necróticas” que en ambos casos pueden afectar al tubérculo completo. Al freírse, estos tubérculos desarrollan un patrón característico de rayado haciéndolos no comerciales. Se ha sugerido que estos síntomas característicos en los tubérculos estén asociados con muerte general de las células, aún cuando no se ha mostrado evidencia para confirmar esta hipótesis. Se llevaron a cabo varios experimentos a fin de determinar si la muerte de las células está asociada con la enfermedad de ZC. La muerte celular se cuantificó inicialmente comparando el lixiviado iónico celular de tubérculos con y sin ZC. Se encontró que los niveles de iones lixiviados fueron significativamente más altos en tubérculos afectados con ZC comparados con los libres de ZC. Para examinar mas la asociación de la muerte de la célula con la enfermedad ZC, a tubérculos infectados y a libres de ZC se les comparó usando los métodos de la clásica tinción histoquímica, junto con microscopía óptica, lo cual reveló capas de células muertas rodeando a numerosas lesiones pequeñas, de forma irregular, a través de la región medular parenquimatosa, el anillo vascular y el cortex de tubérculos afectados por ZC. Esta muerte celular se confirmó usando microscopía electrónica de barrido de alta resolución (FE-SEM) de tejido de cortes de tubérculo fresco.

Notes

Acknowledgments

We thank Jeremy Buchman, Dan Hallauer, Blaine Heilman, and Millie Heidt (USDA-ARS Laboratory in Wapato, WA); Andy Cruz (USDA-ARS Research Farm in Weslaco, TX.); Michael Laffin (University of Calgary, Canada); Darlene Hoffmann (USDA-ARS Laboratory in Parlier, CA); and Valerie Lynch-Holm and Christine Davitt (Franceschi Microscopy and Imaging Center, Washington State University for their technical assistance. We would like to give special thanks to Valerie Lynch-Holm for her invaluable assistance with potato tissue preparation, histochemical staining (toluidine blue and PAS) and training on the FE-SEM. We are also grateful to Drs. Dave Horton, Eugene Miliczky, and Roy Navarre for their critical reading of this manuscript. Financial support for this work was partially provided by Frito Lay, Inc., Texas Department of Agriculture, and the USDA-ARS State Cooperative Potato Research Program.

References

  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Lieting, and G.R.G. Clover. 2009. First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip disease-infected potato plants in the United States. Plant Disease 93: 574–583.CrossRefGoogle Scholar
  2. Almagro, L., L.V. Gómez, S. Belchi-Navarro, R. Bru, A. Ros Barceló, and M.A. Pedreno. 2009. Class III peroxidases in plant defence reactions. Journal of Experimental Botany 60: 377–390.CrossRefPubMedGoogle Scholar
  3. Aviv, D.H., C. Rustérucci, B.F. Holt III, R.A. Dietrich, J.E. Parker, and J.L. Dangl. 2002. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent. Plant Journal 29: 381–391.CrossRefPubMedGoogle Scholar
  4. Bennett, R.N., and R.M. Wallsgrove. 1994. Secondary metabolites in plant defence mechanisms. New Phytologist 127: 617–633.CrossRefGoogle Scholar
  5. Blaszczak, W., M. Chzanowska, J. Fornal, E. Zimnoch-Guzowska, M.C. Palacios, and J. Vacek. 2005. Scanning electron microscopic investigation of different types of necrosis in potato tubers. Food Control 16: 747–752.CrossRefGoogle Scholar
  6. CNAS. 2006. Economic impacts of zebra chip on the Texas potato industry. Center for North American Studies. Texas A&M University. www.cnas.tamu.edu/Zebra%20Chip%Impacts%20Final.pdf.
  7. Coder, D.M. 1997. Assessment of cell viability. In: Current Protocols in Cytometry. Copyright © 1997 by John Wiley & Sons, Inc. 9.2.1–9.2.14Google Scholar
  8. Crosslin, J.M., and J.E. Munyaneza. 2009. Evidence that the zebra chip disease and the causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.CrossRefGoogle Scholar
  9. Cruz, S.S., and D.C. Baulcombe. 1993. Molecular analysis of potato virus X isolates in relation to the potato hypersensitivity gene Nx. Molecular Plant-Microbe Interactions 6: 707–714.PubMedGoogle Scholar
  10. De Weerd, J.W., L.K. Hiller, and R.E. Thornton. 1995. Electrolyte leakage of aging potato tubers and its relationship with sprouting capacity. Potato Research 38: 257–270.CrossRefGoogle Scholar
  11. Epple, P., A.A. Mack, V.R.F. Morris, and J.L. Dangl. 2003. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proceedings of the National Academy of Sciences of the United States of America 100: 6831–6836.CrossRefPubMedGoogle Scholar
  12. Feather, M.S. 1984. Some aspects of the chemistry of nonenzymatic browning (the Maillard reaction). In Chemical changes in food processing, ed. T.R. Richardson and J.W. Finley, 289. Westport: AVI Publ. Co. Inc.Google Scholar
  13. Friedman, M. 1996. Food browning and its prevention: An overview. Journal of Agricultural and Food Chemistry 44: 631–653.CrossRefGoogle Scholar
  14. Friedman, M. 1997. Chemistry, biochemistry, and dietary role of potato polyphenols. A review. Journal of Agricultural and Food Chemistry 45: 1523–1540.CrossRefGoogle Scholar
  15. Gandia-Herrero, F., M. Jiménez-Atiénzar, J. Cabanes, F. Garcia-Carmona, and J. Escribano. 2005. Differential activation of the latent polyphenol oxidase mediated by sodium dodecyl sulfate. Journal of Agricultural and Food Chemistry 53: 6825–6830.CrossRefPubMedGoogle Scholar
  16. Gao, F., J. Jifon, X. Yang, and L. T-X. 2009. Zebra chip disease incidence on potato is influenced by timing of potato psyllid infestation, but not by the host plants on which they were reared. Insect Science 16: 399–408.CrossRefGoogle Scholar
  17. Geier, T. 1980. PAS-positive reaction of phenolic inclusions in plant cell vacuoles. Histochemistry 65: 167–171.CrossRefPubMedGoogle Scholar
  18. Ghanekar, A.S., S.R. Padwal-Desai, and G.B. Nadkarni. 1984. The involvement of phenolics and phyoalexins in resistance of potato soft rot. Potato Research 27: 189–199.CrossRefGoogle Scholar
  19. Goolsby, J.A., J. Adamczyk, B. Bextine, D. Lin, J.E. Munyaneza, and G. Bester. 2007a. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science 59: 85–94.Google Scholar
  20. Goolsby, J.A., B. Bextine, J.E. Munyaneza, M. Sétamou, J. Adamczyk, and G. Bester. 2007b. Seasonal abundance of sharpshooters, leafhoppers, and psyllids associated with potatoes affected by zebra chip disorder. Subtropical Plant Science 59: 15–23.Google Scholar
  21. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new Huanglongbing (HLB) species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Šulc). Applied and Environmental Microbiology 74: 5862–5865.CrossRefPubMedGoogle Scholar
  22. Hinrichs-Berger, J., M. Harfold, S. Berger, and H. Buchenauer. 1999. Cytological responses of susceptible and extremely resistant potato plants to inoculation with potato virus Y. Physiological and Molecular Plant Pathology 55: 143–150.CrossRefGoogle Scholar
  23. Hodge, J.E., F.D. Mills, and B.E. Fischer. 1972. Compounds of browning flavor derived from sugar amine reaction. Cereal Science Today 37: 34.Google Scholar
  24. Kerr, J.F.R., A.H. Wyllie, and A.R. Currie. 1972. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26: 239–257.PubMedGoogle Scholar
  25. Koch, E., and A. Slusarenko. 1990. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2: 437–445.CrossRefPubMedGoogle Scholar
  26. Levin, A., A. Baider, E. Rubin, U. Gisi, and Y. Cohen. 2001. Oospore formation by Phytopthora infestans in potato tubers. Phytopathology 91: 579–585.CrossRefPubMedGoogle Scholar
  27. Lewosz, J., and R. Lojkowska. 1985. Relationship between electrolyte release from potato tuber caused by wounding or by enzymes of Erwinia caratovora ssp. atroseptica and susceptibility to microbial decay and mechanical damage. Ziemniak 25–48.Google Scholar
  28. Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new “Candidatus Liberibacter solanacearum” species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  29. Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.G. Clover. 2009. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology 59: 2274–2276.CrossRefPubMedGoogle Scholar
  30. Lin, H., H. Doddapaneni, J.E. Munyaneza, E.L. Civerolo, V.G. Sengoda, J.L. Buchman, and D.C. Stenger. 2008. Molecular characterization and phylogenetic analysis of 16S rRNA from a new “Candidatus Liberibacter solanacearum” strain associated with zebra chip disease of potato (Solanum tuberosum L.) and the potato psyllid (Bactericera cockerelli Šulc). Journal of Plant Pathology 91: 215–219.Google Scholar
  31. Lockshin, A.L., and Z. Zakeri. 2004. Apoptosis, autophagy, and more. The International Journal of Biochemistry & Cell Biology 36: 2405–2419.CrossRefGoogle Scholar
  32. Lulai, E.C., and D.L. Corsini. 1998. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiological and Molecular Plant Pathology 53: 209–222.CrossRefGoogle Scholar
  33. Lyon, G.D., and F.M. McGill. 1988. Inhibition of growth of Erwinia carotovora in vitro by phenolics. Potato Research 31: 461–467.CrossRefGoogle Scholar
  34. Mittler, R., E.H. Herr, B.L. Orvar, W.V. Camp, H. Willekens, D. Inzé, and B.E. Ellis. 1999. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hypersensitive to pathogen infection. Proceedings of the National Academy of Sciences of the United States of America 96: 14165–14170.CrossRefPubMedGoogle Scholar
  35. Mondy, N.I., and R.L. Kock. 1978. Effect of potato virus X on enzymatic darkening and lipid content of potatoes. Journal of food Science 43: 703–705.CrossRefGoogle Scholar
  36. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  37. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  38. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Segoda. 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.Google Scholar
  39. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, G. De la Rosa-Lozano, and A. Sanchez. 2009. First report of “Candidatus Liberibacter solanacearum” psyllaurous in potato tubers with zebra chip disease in Mexico. Plant Disease 93: 552.CrossRefGoogle Scholar
  40. Murphy, H.J. 1968. Potato vine killing. American Potato Journal 45: 472–478.CrossRefGoogle Scholar
  41. Nakono, J., and G. Meshituka. 1992. The detection of lignin. In Methods in lignin chemistry, ed. S.Y. Lin and C.W. Dence, 25–32. Berlin: Springer.Google Scholar
  42. Navarre, D.A., R. Shakya, J. Holden, and J.M. Crosslin. 2009. LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. American Journal of Potato Research 86: 88–95.CrossRefGoogle Scholar
  43. Nicholson, R.L., and R. Hammerschmidt. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30: 369–389.CrossRefGoogle Scholar
  44. Nourian, F., A.C. Kushalappa, and H.S. Ramaswamy. 2002. Physical, physiological and chemical changes in potato as influenced by Erwinia carotvora infection. Journal of Food Processing and Preservation 26: 339–359.CrossRefGoogle Scholar
  45. O’Brien, T.P., N. Feder, and M.E. McCully. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59: 368–373.CrossRefGoogle Scholar
  46. Pendharkar, M.B., and P.M. Nair. 1995. A comparative study of phenylpropaniod metabolism in gamma irradiated and unirradiated potato tubers. Potato Research 38: 187–198.CrossRefGoogle Scholar
  47. Poiatti, V.A.D., F.R. Dalmas, and L.V. Astarita. 2009. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria. Biological Research 42: 205–215.CrossRefPubMedGoogle Scholar
  48. Ray, H., and R. Hammerschmidt. 1998. Responses of potato tuber infection by Fusarium sambucinum. Physiology and Molecular Plant Pathology 53: 81–92.CrossRefGoogle Scholar
  49. Reape, T.J., and P.F. McCabe. 2008. Apoptotic-like programmed cell death in plants. New Phytologist 180: 13–26.CrossRefPubMedGoogle Scholar
  50. Reape, T.J., E.M. Molony, and P.F. McCabe. 2008. Programmed cell death in plants: Distinguishing between different modes. Journal of Experimental Botany 59: 435–444.CrossRefPubMedGoogle Scholar
  51. Richael, C., and D. Gilchrist. 1999. The hypersensitive response: A case of hold or fold? Physiological and Molecular Plant Pathology 55: 5–12.CrossRefGoogle Scholar
  52. Ruelle, J., M. Yoshida, C. Bruno, and B. Thibaut. 2007. Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21: 345–355.CrossRefGoogle Scholar
  53. Ruzin, E.R. 1999. Plant microtechnique and microscopy. New York: Oxford University Press, Inc.Google Scholar
  54. Sarkanen, K.V., and C.H. Ludwig. 1971. Definition and nomenclature. In Lignins, ed. K.V. Sarkanen and C.H. Ludwig, 1–18. New York: Wiley-Intersci Press.Google Scholar
  55. SAS Institute. 2003. SAS user’s guide: Statistics, version 9.1. SAS Institute, Cary, NC.Google Scholar
  56. Schallenberger, R.S., O. Smith, and R.H. Treadway. 1959. Role of the sugars in browning reaction in potato chips. Journal of Agricultural and Food Chemistry 7: 274–277.CrossRefGoogle Scholar
  57. Secor, G.A., V.V. Rivera, J.A. Abad, I.-M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93: 574–583.CrossRefGoogle Scholar
  58. van Doorn, W.G., and E.J. Woltering. 2005. Many way to exit? Cell death categories in plants. Trends in Plant Science 10: 117–122.PubMedGoogle Scholar
  59. Vermerris, W., K.J. Thompson, and L.M. McIntyre. 2002. The Maize Brown midrib 1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88: 450–457.CrossRefPubMedGoogle Scholar
  60. Vidhyasekaran, P. 2008. Cell wall degradation and fortification. In Fungal pathogenesis in plants and crops: Molecular biology and host defense mechanisms, 2nd ed., 311–312. Boca Raton: CRC Press.Google Scholar
  61. Weber, J., O. Olsen, C. Wegener, and D. Von Wettstein. 1996. Digalacturonates from pectin degradation induced tissue responses against potato soft rot. Physiological and Molecular Plant Pathology 48: 389–401.CrossRefGoogle Scholar
  62. Wyllie, A.H., R.G. Morris, A.L. Smith, and D. Dunlop. 1984. Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis. Journal of Pathology 142: 67–77.CrossRefPubMedGoogle Scholar
  63. Young, N., and A.E. Ashford. 1995. Apoplastic permeability of sclerotia of Sclerotium rolfsii, Sclerotium cepivorum and Rhizoctonia solani. New Phytologist 131: 33–40.CrossRefGoogle Scholar

Copyright information

© Potato Association of America 2010

Authors and Affiliations

  • Godfrey P. Miles
    • 1
  • Marcus A. Samuel
    • 2
  • Jianchi Chen
    • 3
  • Edwin L. Civerolo
    • 3
  • Joseph E. Munyaneza
    • 1
  1. 1.Yakima Agricultural Research LaboratoryUSDA-ARSWapatoUSA
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada
  3. 3.San Joaquin Valley Agricultural Sciences CenterUSDA-ARSParlierUSA

Personalised recommendations