Advertisement

American Journal of Potato Research

, Volume 87, Issue 1, pp 41–49 | Cite as

Phenotypic and Etiological Differences Between Psyllid Yellows and Zebra Chip Diseases of Potato

  • Venkatesan G. Sengoda
  • Joseph E. MunyanezaEmail author
  • James M. Crosslin
  • Jeremy L. Buchman
  • Hanu R. Pappu
Article

Abstract

Both potato psyllid yellows and zebra chip (ZC) potato diseases are associated with the potato psyllid, Bactericera cockerelli (Sulc). Aboveground plant symptoms of both diseases are similar but there is a difference in symptoms in potato tubers. ZC has recently been associated with a new species of the bacterium liberibacter, ‘Candidatus Liberibacter solanacearum’, also known as ‘Ca. Liberibacter psyllaurous’. Mechanisms by which the potato psyllid might cause either ZC or potato psyllid yellows symptoms are not understood. Insect transmission studies were conducted to demonstrate psyllid vectoring of both diseases and to compare symptoms and development of the two diseases. Potato plants were exposed to both liberibacter-free and liberibacter-carrying potato psyllids and later evaluated for plant and tuber symptoms. These plants and tubers were then tested for liberibacter by polymerase chain reaction (PCR). In addition, potato plants exhibiting severe psyllid yellows/ZC-like symptoms were collected from a commercial potato field heavily infested with the potato psyllid and tested for liberibacter. PCR detected ‘Ca. Liberibacter solanacearum’ in ZC symptomatic plants and tubers resulting from exposure to liberibacter-carrying psyllids. Despite development of foliar symptoms that resemble those of ZC in plants exposed to liberibacter-free psyllids, no liberibacter was detected in these plants with psyllid yellows. Moreover, tubers from these plants with psyllid yellows did not exhibit any symptoms of ZC infection and tested negative for the bacterium. No liberibacter was detected in plants or tubers collected from the psyllid-infested potato field, suggesting that the observed symptoms were due to psyllid yellows. Furthermore, potato plants that were infected with liberibacter died sooner than plants that were infected with psyllid yellows. Although an association between liberibacter and ZC has been established, no pathogen is yet associated with potato psyllid yellows and mechanisms by which psyllid yellows symptoms are induced by the potato psyllid remain unclear.

Keywords

Psyllid yellows Zebra chip disease Potato Potato psyllid Candidatus Liberibacter 

Resumen

Las dos enfermedades de la papa, el amarillamiento de la papa por psílidos y zebra chip (ZC), están asociadas con el psílido de la papa Bactericera cockerelli (Sulc). Los síntomas aéreos de la planta por ambas enfermedades son similares, pero hay una diferencia en los síntomas del tubérculo. La ZC se ha asociado recientemente con una nueva especie de bacteria liberibacter, “Candidatus Liberibacter solanacearum” , también conocida como “Ca. Liberibacter psyllaurous”. No se han entendido los mecanismos por los cuales el psílido de la papa puede causar los síntomas, ya sea de la ZC o el amarillamiento de la papa por psílidos. Se condujeron estudios de la transmisión por insectos para demostrar la transmisión de ambas enfermedades por psílidos y para comparar los síntomas y el desarrollo de ambas enfermedades. Se expusieron plantas de papa a psílidos de la papa, tanto libres como con liberibacter, y se evaluaron posteriormente los síntomas de la planta y del tubérculo. Estas plantas y tubérculos se probaron después para liberibacter con la reacción en cadena de la polimerasa (PCR). Además, se colectaron plantas de papa que exhibieron síntomas severos de amarillamiento por psílidos/ZC, de un campo comercial de papa severamente infestado con el psílido de la papa, y se probaron para liberibacter. La PCR detectó “Ca. Liberibacter solanacearum” en plantas y tubérculos con síntomas de ZC, como resultado de su exposición a los psílidos con liberibacter. A pesar del desarrollo de síntomas foliares parecidos a los de ZC en plantas expuestas a los psílidos libres de liberibacter, no se detectó liberibacter en estas plantas con amarillamiento por psílidos. Aún mas, los tubérculos de estas plantas con amarillamiento por psílidos no exhibieron síntomas de infección por ZC y resultaron negativas a la bacteria. No se detectó liberibacter en plantas o tubérculos colectados del campo de papa infestado por psílidos, lo cual sugiere que los síntomas observados fueron debidos al amarillamiento por psílidos. Incluso, las plantas infectadas con liberibacter murieron más pronto que las infectadas con amarillamiento por psílidos. Aún cuando se ha establecido una asociación entre liberibacter y ZC, no se ha asociado a algún patógeno con el amarillamiento de la papa por psílidos y permanecen si aclararse los mecanismos por los cuales se inducen los síntomas del amarillamiento por el psílido de la papa.

Notes

Acknowledgments

We thank Launa Hamlin and Richard Delorme for their invaluable technical assistance. We are also grateful to Jon Gilley and Lucy Carpio from CSS Farms for providing and processing field-collected potatoes affected by psyllid yellows. Financial support for this work was partially provided by Frito Lay, Inc., Texas Department of Agriculture, and the USDA-ARS State Cooperative Potato Research Program.

References

  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Liefting, and G.R.G. Clover. 2009. First Report of the Detection of ‘Candidatus Liberibacter’ Species in Zebra Chip Disease-Infected Potato Plants in the United States. Plant Disease 93: 108.CrossRefGoogle Scholar
  2. Abernathy, R.L. 1991. Investigation into the nature of the potato psyllid toxin. M.S. thesis, Colorado State University, Fort Collins, CO.Google Scholar
  3. Arslan, A., P.M. Bessey, K. Matasuda, and N.F. Oebker. 1985. Physiological effects of psyllid (Paratrioza cockerelli) on potato. American Potato Journal 62: 9–22.CrossRefGoogle Scholar
  4. Carter, R.D. 1950. Toxicity of Paratrioza cockerelli (Sulc) to certain solanaceous plants. Ph.D. dissertation, University of California, Berkeley, CA.Google Scholar
  5. Carter, W. 1939. Injuries to plants caused by insect toxins. Botanical Review 5: 273–326.CrossRefGoogle Scholar
  6. Cranshaw, W.S. 1994. The potato (tomato) psyllid, Paratrioza cockerelli (Sulc), as a pest of potatoes. In Advances in potato pest biology and management, ed. G.W. Zehnder, M.L. Powelson, R.K. Hansson, and K.V. Raman, 83–95. St. Paul, MN: APS.Google Scholar
  7. Cranshaw, W.S. 2001. Diseases caused by insect toxin: psyllid yellows. In Compendium of potato diseases, 2nd ed, ed. W.R. Stevenson, R. Loria, G.D. Franc, and D.P. Weingartner, 73–74. St. Paul, MN: APS.Google Scholar
  8. Crosslin, J.M., J.E. Munyaneza, A.S. Jensen, and P.B. Hamm. 2005. Association of beet leafhopper (Hemiptera: Cicadellidae) with a clover proliferation group phytoplasma in Columbia Basin of Washington and Oregon. Journal of Economic Entomology 98: 279–283.CrossRefPubMedGoogle Scholar
  9. Crosslin, J.M., G.J. Vandemark, and J.E. Munyaneza. 2006. Development of a real-time, quantitative PCR for detection of the Columbia Basin potato purple top phytoplasma in plants and beet leafhoppers. Plant Disease 90: 663–667.CrossRefGoogle Scholar
  10. Crosslin, J.M. and G. Bester. 2009. First report of ‘Candidatus Liberibacter psyllaurous’ in zebra chip symptomatic potatoes from California. Plant Disease 93: 551.CrossRefGoogle Scholar
  11. Crosslin, J.M. and J.E. Munyaneza. 2009. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.CrossRefGoogle Scholar
  12. Daniels, L.B. 1954. The nature of the toxicogenic condition resulting from the feeding of the tomato psyllid Paratrioza cockerelli (Sulc). Ph.D. dissertation: University of Minnesota, St. Paul, MN.Google Scholar
  13. Eyer, J.R. and R.F. Crawford. 1933. Observations on the feeding habits of the potato psyllid (Paratrioza cockerelli Sulc.) and the pathological history of the “psyllid yellows” which it produces. Journal of Economic Entomology 26: 846–850.Google Scholar
  14. Eyer, J.R. 1937. Physiology of psyllid yellows of potatoes. Journal of Economic Entomology 30: 891–898.Google Scholar
  15. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’ found to infect tomato and potato, is vectored by the Psyllid Bactericera cockerelli (Sulc). Applied Environmental Microbiology 74: 5862–5865.CrossRefGoogle Scholar
  16. Lee, I.M., K.D. Bottner, J.E. Munyaneza, G.A. Secor, and N.C. Gudmestad. 2004. Clover proliferation group (16SrVI) subgroup A (16SrVI-A) phytoplasma is a probable causal agent of potato purple top disease in Washington and Oregon. Plant Disease 88: 429.Google Scholar
  17. Li, W., J.A. Abad, R.D. French-Monar, J. Rascoe, A. Wen, N.C. Gudmestad, G.A. Secor, I.-M. Lee, Y. Duan, and L. Levy. 2009. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. Journal of Microbiological Methods 78: 59–65.CrossRefPubMedGoogle Scholar
  18. Liefting, L.W., Z.C. Rez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A New ‘Candidatus Liberibacter’ Species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  19. Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.G. Clover. 2009a. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology 59: 2274–2276.CrossRefPubMedGoogle Scholar
  20. Liefting, L.W., P.W. Sutherland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009b. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Disease 93: 208–214.CrossRefGoogle Scholar
  21. Lin, H., H. Doddapaneni, J.E. Munyaneza, E. Civerolo, V.G. Sengoda, J.L. Buchman, and D.C. Stenger. 2009. Molecular characterization and phylogenetic analysis of 16 S rRNA from a new species of “Candidatus Liberibacter” associated with Zebra chip disease of potato (Solanum tuberosum L.) and the potato psyllid (Bactericera cockerelli Sulc). Journal of Plant Pathology 91: 215–219.Google Scholar
  22. Munyaneza, J.E. 2005. Purple top disease and beet leafhopper- transmitted virescence agent (BLTVA) phytoplasma in potatoes of the Pacific Northwest of the United States. In Potato in progress: science meets practice. Science meets practice, ed. A.J. Haverkort and P.C. Struik, 211–220. Wageningen, The Netherlands: Wageningen Academic.Google Scholar
  23. Munyaneza, J.E. and J.E. Upton. 2005. Beet leafhopper (Hemiptera: Cicadellidae) settling behavior, survival, and reproduction on selected host plants. Journal of Economic Entomology 98: 1824–1830.CrossRefPubMedGoogle Scholar
  24. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2006. The beet leafhopper (Hemiptera: Cicadellidae) transmits the Columbia Basin potato purple top phytoplasma to potatoes, beets, and weeds. Journal of Economic Entomology 99: 268–272.CrossRefPubMedGoogle Scholar
  25. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  26. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  27. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Sengoda. 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.Google Scholar
  28. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, G. De la Rosa-Lozano, and A. Sanchez. 2009a. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with zebra chip disease in Mexico. Plant Disease 93: 552.CrossRefGoogle Scholar
  29. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, J. Garzon-Tiznado, and O. Cardenas-Valenzuela. 2009b. First Report of ‘Candidatus Liberibacter solanacearum’ in Tomato Plants in Mexico. Plant Disease 93: 1076.Google Scholar
  30. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, J. Garzon-Tiznado, and O. Cardenas-Valenzuela. 2009c. First Report of ‘Candidatus Liberibacter solanacearum’ in Pepper in Mexico. Plant Disease 93: 1076.Google Scholar
  31. Presting, G.G., O.P. Smith, and C.R. Brown. 1995. Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology 85: 436–442.CrossRefGoogle Scholar
  32. Richards, L.B. 1929. Psyllid yellows of potatoes. Utah Agricultural Experiment Station Bulletin 209: 50–51.Google Scholar
  33. Richards, B.L. 1931. Further studies with psyllid yellows of the potato. Phytopathology 21: 103.Google Scholar
  34. Richards, B.L. and H.L. Blood. 1933. Psyllid yellows of the potato. Journal of Agricultural Research 46: 189–216.Google Scholar
  35. Sanford, G.B. 1952. Phloem necrosis of potato tubers associated with infestation of vines by Paratrioza cockerelli Sulc. Scientia Agricola 32: 433–439.Google Scholar
  36. Secor, G.A. and V.V. Rivera-Varas. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Revista Latinoamericana de la Papa (Suplemento) 1: 1–8.Google Scholar
  37. Secor, G.A., V.V. Rivera, J.A. Abad, I.-M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with Zebra Chip Disease of Potato Established by Graft and Psyllid Transmission, Electron Microscopy, and PCR. Plant Disease 93: 574–583.CrossRefGoogle Scholar
  38. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. U.S. Dep. Agric. Tech. Bull. 1107. Washington, DC.Google Scholar
  39. Zhang, Y.P., J.K. Uyemoto, and B.C. Kirkpatrick. 1998. A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. Journal of Virological Methods 71: 45–50.CrossRefPubMedGoogle Scholar

Copyright information

© Potato Association of America 2009

Authors and Affiliations

  • Venkatesan G. Sengoda
    • 1
    • 2
  • Joseph E. Munyaneza
    • 1
    • 4
    Email author
  • James M. Crosslin
    • 3
  • Jeremy L. Buchman
    • 1
  • Hanu R. Pappu
    • 2
  1. 1.USDA-ARSYakima Agricultural Research LaboratoryWapatoUSA
  2. 2.Department of Plant PathologyWashington State UniversityPullmanUSA
  3. 3.USDA-ARSVegetable and Forage Crop Research UnitProsserUSA
  4. 4.USDA-ARSWapatoUSA

Personalised recommendations