Seasonal Occurrence and Abundance of the Potato Psyllid, Bactericera cockerelli, in South Central Washington

  • Joseph E. MunyanezaEmail author
  • James M. Crosslin
  • Jeremy L. Buchman


The potato psyllid, Bactericera cockerelli Sulc, has recently been identified as a vector of Candidatus Liberibacter solanacearum, the putative causal agent of zebra chip potato disease. Zebra chip is causing millions of dollars in losses to the potato industry in the United States, Mexico, Central America, and New Zealand. Currently, the most effective strategy to manage this potato disease is to target the potato psyllid with insecticides. Effective management of this insect pest requires knowledge of its biology, ecology, geographic distribution, and population dynamics. Although it is well documented that the potato psyllid is common throughout the western United States, several reports have indicated that this insect pest does not occur in Washington and Oregon. However, this insect has recently been observed and collected in this region. Studies were conducted from 2005 to 2008 to document and determine the seasonal occurrence of the potato psyllid in this important potato growing region of the United States. The potato psyllid was monitored in untreated experimental potato plots at Moxee and Prosser in south central Washington. Contrary to previous reports, the potato psyllid was found to occur in Washington and appears to migrate into the region late in the growing season. Upon arrival in south central Washington in late July, this insect readily reproduces in potatoes and appears to have at least one generation a year. The origin of potato psyllids migrating to Washington has not yet been determined. Information from this study will help potato growers in Washington manage the potato psyllid to better prevent potential zebra chip outbreaks.


Potato psyllid Bactericera cockerelli Potato Zebra chip Candidatus Liberibacter Population dynamics 


El psílido de la papa, Bactericera cockerelli Sulc, se ha identificado recientemente como un vector de Candidatus Liberibacter solanacearum, el presunto agente causal de la enfermedad de la papa Zebra chip. Esta enfermedad esta causando millones de dólares en pérdidas en la industria de la papa en Estados Unidos, México, Centroamérica y Nueva Zelanda. Actualmente, la estrategia más efectiva para manejar esta enfermedad de la papa es enfocarse al psílido de la papa con insecticidas. El manejo efectivo de este insecto plaga requiere del conocimiento de su biología, ecología, distribución geográfica y dinámica poblacional. Aún cuando está bien documentado que el psílido de la papa es común a lo largo del oeste de los Estados Unidos, varios reportes indican que este insecto no se presenta en Washington y Oregon. No obstante, se le ha observado y colectado a este insecto en esta región. Se han hecho estudios de 2005 a 2008 para documentar y determinar la ocurrencia estacional del psílido de la papa en esta región tan importante de cultivo de papa en los Estados Unidos. El psílido de la papa se ha monitoreado en lotes experimentales de papa no tratados en Moxee y Prosser en la parte centro-sur de Washington. Contrario a reportes previos, se ha visto que el psílido de la papa se presenta en Washington y parece migrar al interior de la región al final del ciclo de cultivo. Al llegar al centro sur de Washington a finales de julio, el insecto se reproduce rápidamente en papa y parece tener por lo menos una generación al año. Aun no ha sido determinado el origen de los psílidos de papa que emigran a Washington. La información de este estudio ayudará a los productores de papa en Washington a manejar el psílido para una mejor prevención de establecimientos potenciales de zebra chip.



We thank Jeff Upton, Millie Heidt, Dan Hallauer, Blaine Heilman, and Launa Hamlin for their invaluable technical assistance. We also thank Ethan C. Kane at the Systematic Entomology Laboratory, USDA-ARS, Beltsville, MD, for his assistance in the identification of collected psyllids. We are also grateful to anonymous reviewers who made suggestions to an earlier draft of this manuscript. Financial support for this work was partially provided by Frito Lay, Inc. and the USDA-ARS State Cooperative Potato Research Program.


  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Liefting, and G.R.G. Clover. 2009. First Report of the detection of ‘Candidatus Liberibacter’ species in zebra chip disease-infected potato plants in the United States. Plant Disease 93: 108.CrossRefGoogle Scholar
  2. Abdullah, N.M.M. 2008. Life history of the potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) in controlled environment agriculture in Arizona. African Journal of Agriculture Research 3: 60–67.Google Scholar
  3. Abernathy, R.L. 1991. Investigation into the nature of the potato psyllid toxin. M. S. Thesis, Colorado State University, Fort Collins, CO. 54 pp.Google Scholar
  4. Capinera, J.L. 2001. Handbook of vegetable pests, 729. San Diego: Academic Press.Google Scholar
  5. Cranshaw, W.S. 1994. The potato (tomato) psyllid, Paratrioza cockerelli (Sulc), as a pest of potatoes, pp. 83–95. In Advances in potato pest biology and management, ed. G.W. Zehnder, M.L. Powelson, R.K. Hansson, and K.V. Raman. St. Paul: APS.Google Scholar
  6. Cranshaw, W.S. 2001. Diseases caused by insect toxin: Psyllid yellows, pp. 73–74. In Compendium of potato diseases (2nd Ed.), ed. W.R. Stevenson, R. Loria, G.D. Franc, and D.P. Weingartner. St. Paul: APS.Google Scholar
  7. Crosslin, J.M. and G. Bester. 2009. First report of ‘Candidatus Liberibacter psyllaurous’ in zebra chip symptomatic potatoes from California. Plant Disease 93: 551.CrossRefGoogle Scholar
  8. Crosslin, J.M. and J.E. Munyaneza. 2009. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.CrossRefGoogle Scholar
  9. Crosslin, J.M., J.E. Munyaneza, A. Jensen, and P.B. Hamm. 2005. Association of the beet leafhopper (Hemiptera: Cicadellidae) with a clover proliferation group phytoplasma in Columbia Basin of Washington and Oregon. Journal of Economic Entomology 98: 279–283.CrossRefPubMedGoogle Scholar
  10. Ferro, D.N. and G. Boiteau. 1993. Managements of insect pests, pp. 103–115. In Potato health management, ed. R.C. Rowe. St Paul: APS.Google Scholar
  11. Gharalari, A.H., C. Nansen, D.S. Lawson, J. Gilley, J.E. Munyaneza, and K. Vaughn. 2009. Knockdown mortality, repellency, and residual effects of insecticides for control of adult Bactericera cockerelli (Hemiptera: Psyllidae). Journal of Economic Entomology 102: 1032–1038.CrossRefPubMedGoogle Scholar
  12. Goolsby, J.A., J. Adamczyk, B. Bextine, D. Lin, J.E. Munyaneza, and G. Bester. 2007. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science 59: 85–94.Google Scholar
  13. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied Environmental Microbiology 74: 5862–5865.CrossRefGoogle Scholar
  14. Liefting, L.W., Z.C. Rez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  15. Liefting, L.W., P.W. Southerland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009a. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Disease 93: 208–214.CrossRefGoogle Scholar
  16. Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.C Clover. 2009b. Candidatus Liberibacter solanacearum’, a liberibacter associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology (in press).Google Scholar
  17. Lin, H., H. Doddapaneni, J.E. Munyaneza, E.L. Civerolo, V.G. Sengoda, J.L. Buchman, and D.C. Stenger. 2009. Molecular characterization and phylogenetic analysis of 16S rRNA from a new species of “Candidatus Liberibacter” associated with Zebra chip disease of potato (Solanum tuberosum L.) and the potato psyllid (Bactericera cockerelli Sulc). Journal of Plant Pathology 91: 213–217.Google Scholar
  18. List, G.M. 1939. The effect of temperature upon egg deposition, egg hatch and nymphal development of Paratrioza cockerelli (Sulc). Journal of Economic Entomology 32: 30–36.Google Scholar
  19. Liu, D. and J.T. Trumble. 2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata 123: 35–42.CrossRefGoogle Scholar
  20. Liu, D., J.T. Trumble, and R. Stouthamer. 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis et Applicata 118: 177–183.CrossRefGoogle Scholar
  21. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2006. The beet leafhopper (Hemiptera: Cicadellidae) transmits the Columbia Basin potato purple top phytoplasma to potatoes, beets, and weeds. Journal of Economic Entomology 99: 268–272.CrossRefPubMedGoogle Scholar
  22. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  23. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the Lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  24. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Sengoda. 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.Google Scholar
  25. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, G. De la Rosa-Lozano, and A. Sanchez. 2009. First report of Candidatus Liberibacter psyllaurous in potato tubers with zebra chip disease in Mexico. Plant Disease 93: 552.CrossRefGoogle Scholar
  26. Pletsch, D.J. 1947. The potato psyllid Paratrioza cockerelli (Sulc), its biology and control. Montana Agricultural Experiment Station Bulletin 446: 95.Google Scholar
  27. Richards, B.L. and H.L. Blood. 1933. Psyllid yellows of the potato. Journal of Agricultural Research 46: 189–216.Google Scholar
  28. Rubio-Covarrubias, O.A., I.H. Almeyda-Leon, J.I. Moreno, J.A. Sanchez-Salas, R.F. Sosa, J.T. Borbon-Soto, C.D. Hernandez, J.A. Garzon-Tiznado, R.R. Rodriguez, and M.A. Cadena-Hinajosa. 2006. Distribution of potato purple top and Bactericera cockerelli Sulc. in the main potato production zones in Mexico. Agricultura Técnica en México 32: 201–211.Google Scholar
  29. SAS Institute. 2003. SAS user’s guide: statistics, version 9.1. SAS Institute, Cary, NC.Google Scholar
  30. Secor, G.A. and V.V. Rivera-Varas. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Suplemento Revista Latinoamericana de la Papa 1: 1–8.Google Scholar
  31. Secor, G.A., V.V. Rivera, J.A. Abad, I.-M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93: 574–583.CrossRefGoogle Scholar
  32. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. USDA Technical Bulletin 1107: 25.Google Scholar

Copyright information

© Potato Association of America 2009

Authors and Affiliations

  • Joseph E. Munyaneza
    • 1
    Email author
  • James M. Crosslin
    • 2
  • Jeremy L. Buchman
    • 1
  1. 1.USDA-ARSYakima Agricultural Research LaboratoryWapatoUSA
  2. 2.USDA-ARSVegetable and Forage Crops Research UnitProsserUSA

Personalised recommendations